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Reinforcement Learning from Human Feedback: 
From Theory to Algorithm



RL Research for Large Language Models



Foundation Generative Models
General ChatBot Coding Assistant Music, Video, Image Generation



Foundation Model Pipeline
Pre-training Instruction-following training

GPT-3

1. LLM is trained on a large amount of 
unlabelled data, to predict next token: 
P(next token | prior tokens);


2. Goal: acquire general knowledge. 

Yao Fu, How does GPT Obtain its Ability? Tracing Emergent Abilities of Language Models to their Sources



Foundation Model Pipeline
Pre-training Instruction-following training

GPT-3 Text-davinci-002

Ability to follow humans’ instructions.

Yao Fu, How does GPT Obtain its Ability? Tracing Emergent Abilities of Language Models to their Sources

Tell me something 
about the sushi

… culture in Switzerland. 
Sushi has been around for a 
long time in Switzerland, …

… Sushi is a traditional 
Japanese dish that consists of 
vinegared rice combined with 

various ingredients



Reinforcement Learning from Human Feedback (RLHF)

Text-davinci-002
RLHF

Chat-GPT 3.5

1. RLHF is the leading technique to adapt the generation distribution to be 
preferred by the humans: helpful, harmless, and honest; 

2. RLHF learns from relative feedback

✅



Formulation of LLM and RLHF



Language Model as RL/Bandit Agent

1. Prompt : state from some distribution 


1. Explain the moon landing to a 6 year old child.


2. Response : action


1. Explain gravity …


2. Explain war…


3. Moon is natural satellite of …


3. LLM: policy 


1. Initial policy .

x ∈ ℰ d0

a ∈ 𝒜

π : 𝒳 → Δ(𝒜)

π0



Bradley-Terry (BT) Model

• The Bradley-Terry model is a proxy of the Human preference


• Linear parameterization:  r⋆(x, a) = ⟨ϕ(x, a), θ⋆⟩

x BT Model 
θ r1 ∈ ℝ

𝒫θ(a1 ≻ a2 |x) =
er1

er1 + er2

a1

a2

x BT Model 
θ

r2 ∈ ℝ



RLHF as Reverse-KL Regularized Contextual Bandit

In practice, the following regularized learning objective is adopted:

max
π∈Π

J(π) = max
π∈Π

𝔼x∼d0[ 𝔼a∼π(⋅|x)[r⋆(x, a)]

Optimize Reward

− ηKL(π( ⋅ |x)∥π0( ⋅ |x))

Stay Close to π0

] .



• The BT model is not perfect: the major difference from traditional DRL


• The KL-constraint framework admits a stochastic optimal policy;


• The KL constraint optimization problem admits a closed-form solution:


• where 


• Assume the computational oracle:

Z(x) = ∑
a′ ∈𝒜

π0(a′ |x)exp(
1
η

r(x, a′ )) .

In practice, the following regularized learning objective is adopted:


𝒪(r, η, π0)

arg max
π

[𝔼a∼π(⋅|x)[r(x, a)] − ηKL(π( ⋅ |x)∥π0( ⋅ |x))] =
1

Z(x)
⋅ π0(a |x)exp(

1
η

r(x, a)) .

max
π∈Π

J(π) = max
π∈Π

𝔼x∼d0[ 𝔼a∼π(⋅|x)[r⋆(x, a)]

Optimize Reward

− ηKL(π( ⋅ |x)∥π0( ⋅ |x))

Stay Close to π0

] .

RLHF as Reverse-KL Regularized Contextual Bandit



Instruct-GPT Framework to Make Chat-GPT

• Preference Data Collection:  

• Contextual bandit:   (typically )


• Preference signal: 


• Learning Reward model as MLE: 

•  

• Optimize the learned reward using PPO.

x ∼ d0, a1, a2 ∼ πb( ⋅ |x) π0

y ∼ 𝒫⋆
BT( ⋅ |x, a1, a2)

ℓ𝒟(θ) = ∑
(x,aw,al)∈𝒟

log(σ(rθ(x, aw) − rθ(x, al)))

Ouyang, Long et al., Training language models to follow instructions with human feedback



Fundamental Issue: Reward Hacking

Collin Burns et al., Weak-to-Strong Generalization: Eliciting Strong Capabilities With Weak Supervision

• Heavily optimize the proxy reward leads to reward hacking: 

• Higher reward


• But worse performance


• The learned proxy reward are of issues: 

• SOTA RMs achieve accuracy ~75% (due to noise and human disagreement)


• Sensitivity to sampling distribution (determined by the behavior policy)


• Fine-tuning improves in-distribution generalization, but often performs poorly out-
of-distribution.



Fundamental Issue: Reward Hacking

Simplified Figure from Leo Gao et al., Scaling Laws for Reward Model Overoptimization  

Distribution shift: KL between  and tuned policyπ0

Disagreement between proxy and gold



Offline Learning from a Fixed Preference Dataset



Insufficient Dataset Coverage

• Unbalanced Preference Coverage 

• Prompt A: Can you write a code for … 

• A good code v.s. another good code;


• A good code v.s. a bad code;


• A bad code v.s. another bad code.


• …


• Prompt B: What is the best fitness app? 

•  what is fitness app?   v.s.    I am sorry, but I am an AI model…a1 : a2 :



Insufficient Dataset Coverage

• Unbalanced Preference Coverage 

• Prompt A: Can you write a code for … 

• A good code v.s. another good code;


• A good code v.s. a bad code;


• A bad code v.s. another bad code.


• …


• Prompt B: What is the best fitness app? 

•  what is fitness app?   v.s.    I am sorry, but I am an AI model…a1 : a2 :

Ying Jin, Zhuoran Yang, and Zhaoran Wang, Is Pessimism Provably Efficient for Offline RL?



RLHF with Pessimism

• Construct the Pessimistic Reward 

• Compute


• Where 


• Planning with the Pessimistic Reward: 

• ̂π( ⋅ |x) = 𝒪(r, η, π0) .

Lower confidence bound (LCB)

̂r(x, a) = rMLE(x, a) − c ⋅ d∥ϕ(x, a) − ϕ(x, π0)

reference

∥Σ−1
off

,

Σoff = λI + ∑
x,a1,a2∈𝒟off

(ϕ(x, a1) − ϕ(x, a2))(ϕ(x, a1) − ϕ(x, a2))⊤ .

Xiong, Wei, et al., Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint 



RLHF with Pessimism
Theorem: Guarantee for the Pessimistic RLHF


If the offline dataset covers the target  well:

, then with probability at 

least ,  we have


(π⋆, π0)

𝔼x∼d0,a1∼π⋆(⋅|x),a2∼π0(⋅|x)∥ϕ(x, a1) − ϕ(x, a2)∥Σ−1
off

≤
C⋆

noff

1 − δ

• Partial coverage:  

•  : distribution shift between behavior policy and target policy C⋆ (π⋆, π0)

Xiong, Wei, et al., Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint 

J(π⋆) − J( ̂π) + ηKL(π⋆∥ ̂π) ≲
d ⋅ C⋆

noff



Is a Good Coverage Assumption Practical?

•  : distribution shift between behavior policy and coverage target


• Significant shift in open-source dataset due to the long sequence nature

C⋆

Average 
πMistral−7B−v0.1(a |x)
πGemma−2B−it(a |x)

≈ exp(80)

Bai, et al. Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback



RLHF with Pessimism

• Pessimism by Ensemble 

• A popular heuristic implementation of pessimism is based on ensemble  
 where   are independently trained̂r(x, a) = min

k=1,...5
rk(x, a) rk

Thomas, Costa, et al., Reward model ensembles help mitigate Overoptimization



Batch Hybrid Learning with Online Exploration



RLHF with Only Exploration

• Batch Hybrid Leanring 

• Hybrid: we start with an offline set but can also query the human during training


• Batch: we use a large batch size for a sparse update 

• Remark: PPO with a fixed learned reward: offline learning


• Intuition: Online Exploration Improves RLHF Policy 

•  can only sample low-reward responses (in-distribution for learned reward);


• During PPO training, the reward gets higher and higher (out-of-distribution);


• Querying human feedback for these high-reward responses mitigates the OOD issue.

π0



Online Iterative RLHF

• For t = 1, 2, 3, … 

• Exploitation with the main agent: , with  as the MLE on ;


• Choose the enhancer policy: 

• (1)   

• (2) ;


• Collect the m new samples  into .

π1
t = 𝒪( ̂rt, η, π0) ̂rt 𝒟

π2
t = arg max

π′ ∈Γt

∥ϕ(x, π′ ) − ϕ(x, π1
t )∥Σ−1

t,m

π2
t = π0

xt,j, a1
t,j, a2

t,j, yt,j ∼ (d0, π1
t , π2

t , 𝒫⋆
BT) 𝒟

Initialized with  and define the covariance matrix:𝒟 = 𝒟off

Confidence set: Πt = {π′ : β∥ϕ(x, π′ ) − ϕ(x, π1
t )∥Σ−1

t,m
≥ ηKL(π′ ( ⋅ |x)∥π1

t ( ⋅ |x)}

Σt,m = λI +
1
m

t−1

∑
i=1

m

∑
j=1

(ϕ(xi,j, a1
i,j) − ϕ(xi,j, a2

i,j)(ϕ(xi,j, a1
i,j) − ϕ(xi,j, a2

i,j)
⊤ .



Online Iterative RLHF

Theorem 2 Part 1: Guarantee for the Online Iterative RLHF with optimism


With Option I, if we run the online iterative RLHF with batch size  for 

 times, w.p. at least , we can find a  such that


m = c ⋅
d
ϵ2

T = Ω̃(d) 1 − δ t0 ∈ [T]
J(π⋆) − J(π1

t0) + ηKL(π⋆∥π1
t0) ≤ ϵ

Xiong, Wei, et al., Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint 



Online Iterative RLHF

Theorem 2 Part 2: Guarantee for the Online Iterative RLHF with offline dataset


With Option II, if we run the hybrid iterative RLHF with batch size  for 

 times, w.p. at least , we can find a  such that


m = c ⋅
d
ϵ2

T = Ω̃(d) 1 − δ t0 ∈ [T]

J(π⋆) − J(π1
t0) + ηKL(π⋆∥π1

t0) ≤ ϵ + d∥𝔼[ϕ(x, π⋆) − ϕ(x, π0)]∥Σ−1
off+1:t0

.

Xiong, Wei, et al., Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint 

• Offline v.s. Hybrid : under the offline coverage condition, , online data 
collected by  may cover  better;


• Online v.s. Hybrid: optimism v.s. additional offline dataset coverage.

πt → π⋆

(πt, π0) (π⋆, π0)



Practical Algorithm: Approximate the Computational Oracle

• PPO with regularized reward


• Loading 4 models at the same time: tuned model, critic, reward, and .


• DPO, SLiC, IPO, InfoNCA, GPO: different choices of the binary classification loss


• Direct Preference Optimization skips the reward modeling and optimize

π0

𝒪(r, η, π0) := arg max
π

𝔼a∼π(⋅|x)[r(x, a) − ηKL(π( ⋅ |x)∥π0( ⋅ |x))]Computation oracle:


̂r(x, a) = r(x, a) − η log
π(a |x)
π0(a |x)

.

L(θ, η, π0) = − ∑
(x,aw,al)∈𝒟

log σ(η log
πθ(aw |x)
π0(aw |x)

− η log
πθ(al |x)
π0(al |x) ) .



Online Iterative RLHF: Experimental Result 1

• Setup 

• Model: Open-LLaMA-3B; Dataset: HH-RLHF (multi-round conversation); Gold reward: 
Ultra-LLaMA-13B RM to approximate human


• Main message: sampling new data from online exploration is far more efficient than 
sample more in-distribution data from π0

Scaling Laws for Reward Model Overoptimization



Online Iterative RLHF: Experimental Result 2
1. The same setup but with 


1. Model: Zephyr trained from Mistral-7B-v0.1


2. Prompt set: Ultra feedback 60K


2. Online Exploration


1. Exploitation: close to  (MLE);


2. Exploration: maximize policy difference;


3. Rejection sampling: we sample 4 responses and 
use the best sample.

π1
t

Dong H, Xiong W, et al. Raft: Reward ranked finetuning for generative foundation model alignment



Beyond the Reward-based Framework:  
RLHF with General Preference



Bradley-Terry (BT) Model

• The Bradley-Terry model is a proxy of the preference oracle with issues:


• Its transitivity may not hold in practice

x BT Model 
θ r1 ∈ ℝ

𝒫⋆
BT(a1 ≻ a2 |x, a1, a2) =

er1

er1 + er2

a1

a2

x BT Model 
θ

r2 ∈ ℝ

P(a1 ≺ a2) > 0.5 & P(a2 ≺ a3) > 0.5 ⇒ P(a1 ≺ a3) > 0.5



Preference Model

x
Preference 

Model 
θ

z ∈ ℝ
Sigmoid σ

𝒫⋆(a1 ≻ a2 |x, a1, a2) = σ(z)a1

a2

• The Preference Model is a proxy of the preference oracle with larger capacity:


• ✅ It doesn’t impose the transitivity ( )


• Anti-symmetric Relative preference

a1 ≺ a2 & a2 ≺ a3 ⇒ a1 ≺ a3

R⋆(x, a1, a2) = log
𝒫⋆(a1 ≻ a2 |x, a1, a2)
𝒫⋆(a1 ≺ a2 |x, a1, a2)

= r⋆(x, a1) − r⋆(x, a2)

If BT is true.



RLHF with General Preference

KL-Regularized Two-player Game: 


                                       


With the KL terms, the regularized objective enjoy following benefits:


• The KL regularization can (potentially) mitigate reward hacking and 
guarantee the optimal policy to be stochastic (diverse)


• The objective becomes strongly concave-convex  unique symmetric 
Nash equilibrium 

→

Note: KL is not the only choice, other divergences may also be used (e.g., Jensen-Shannon). arXiv:2309.16240

(π⋆, π⋆) = max
π

min
π′ 

R⋆(π, π′ ) − ηKL(π∥π0) + ηKL(π′ ∥π0)



Online Iterative RLHF with General Preference

Computation oracle:


Initialized with for t=1,2,3,…


• Main agent: compute the MLE  on  and take  

• Choose the enhancer policy:  

• Collect the m new samples  into .

𝒟 = ∅,

R̂t 𝒟

a1
t,j, a2

t,j ∼ (π1
t , π2

t ), yt,j ∼ 𝒫⋆ 𝒟

𝒪(R, π0, η) = arg max
π

arg min
π′ 

R(π, π′ ) − ηKL(π∥π0) + ηKL(π′ ∥π0)

π1
t = 𝒪(R̂t, π0, η)

π2
t = arg min

π2∈Π
𝔼a1∼π1

t ,a2∼π2 sup
R∈ℛ

|R(x, π1
t , π2) − R̂t(x, πt

1, π2) |

λ + 1
m ∑t−1

s=1 ∑m
j=1 (R(xs,j, a1

s,j, a2
s,j) − R̂t(xs,j, a1

s,j, a2
s,j))2

Information ratio



Online Iterative RLHF
Theorem 3: Guarantee for the Online Iterative RLHF with General Preference


If we run the algorithm with batch size  for  times, w.p. at 

least , we can find a  such that


m = c ⋅
d
ϵ2

T = Ω̃(d)

1 − δ t0 ∈ [T]
J(π⋆, π⋆) − min

π′ 

J(π1
t0, π′ ) = − min

π′ 

[R⋆(x, a1, a2) − ηKL(π1
t0∥π0) + ηKL(π′ ∥π0)] ≤ ϵ

1. With small , the model consistently outperform any competing policy


3. With the BT model,  

η, ϵ

min
π′ ∈Π

𝔼x∼d0
𝔼a1∼π1

t0,a
2∼π′ 

𝒫(a1 ≻ a2 |x, a1, a2) > 0.5.

𝔼x∼d0
𝔼a1∼π1

t0
[r⋆(x, a1) − ηKL(π1

t0∥π0)] ≥ max
π′ ∈Π

𝔼x∼d0
𝔼a2∼π′ [r⋆(x, a2) − ηKL(π′ ∥π0)] − ϵ .

Ye C, Xiong W, Zhang Y, et al., Iterative reinforcement learning from human feedback with general preference: from theory to algorithm



On-going Challenges and Future Directions



Challenge 1: Preference Conflict

Peering Through Preferences: Unraveling Feedback Acquisition for Aligning Large Language Models
HELM Instruct: A Multidimensional Instruction Following Evaluation Framework with Absolute Ratings  

• The agreement rate among humans 
is only 70%;


• Even the LLMs have different 
preferences.



Challenge 2: Insufficiency of Scalar Reward

HelpSteer: Multi-attribute Helpfulness Dataset for SteerLM

Human possesses intricate and even contradictory targets



Multi-objective Reward

Nathan Lambert et al., RewardBench: Evaluating Reward Models for Language Modeling

1. Reward Modeling: multi-objective rewards 


1. Good performance 


2. Multi-head + Mixture of Expert

⃗r = (r1, r2, ⋯, rk)

f(x, a) =
k

∑
i=1

g(x)i ⋅ ri(x, a)



User-preference-aware Alignment

1. User-preference-aware objective

J(π) = 𝔼ν∼dν[𝔼x∼d0,a∼π(⋅|ν,x) f(ν, x, a)] . f(ν, x, a) =
k

∑
i=1

g(ν, x)i ⋅ ri(x, a)

Wang H, Lin Y, Xiong W, et al. Arithmetic Control of LLMs for Diverse User Preferences: Directional Preference Alignment with Multi-Objective Rewards



End Note

1. Offline learning: pessimism;


2. Online iterative learning: collecting new online data;


3. Use more general preference modeling:


1. General preference


2. Multi-objective reward


3. User-dependent preference 


4. Structured problem: math, coding, and agent…

Central problem: how to model the preference signal



Thanks for listening!


