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Introduction: Decentralized Composite Optimization

Decentralized Composite Optimization

We consider the decentralized composite optimization with m agents:

min
x∈Rd

h(x) = f(x) + r(x) :=
1

m

m∑
i=1

fi(x) + r(x) (1)

Each agent has a private local dataset: fi(x) :=
1
n

∑n
j=1 fi,j(x);

r(x) is a convex regularization and the following operator can be efficiently solved:

proxη,r(x) = argmin
z∈Rd

(
r(z) +

1

2η
∥z − x∥2

)
,

Communication: each agent can send O(1) d-dimensional vectors to her neighbors.
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Introduction: Decentralized Composite Optimization

Decentralized Communication

We adopt the gossip matrix based communication protocol. Let W ∈ Rm×m be the
gossip matrix and let xold = [xold

1 , · · · , xold
m ]⊤, and xnew = [xnew

1 , · · · , xnew
m ]⊤,

In parallel, for each agent i
agent i receives xold

j from all neighbors j ∈ Ni;

agent i updates her local variable by a weighted sum of them: xnew
i =

∑
j∈Ni

wijx
old
j ;

Mathematically, the communication can be abstracted as

xnew = Wxold;

Assumptions on W
wij ̸= 0 if agent i and j can exchange information;
W is symmetric;
0 ⪯ W ⪯ I,W1 = 1,null(I −W ) = span(1);

Mixing rate: ∥Wx− 1
m
11⊤x∥ ≤ λ2(W )||x− 1

m
11⊤x||. Therefore, λ2(W ) ∈ [0, 1)

indicates how fast the variables will be averaged through decentralized
communications;

For any network, there exists such a W . We may design the network to achieve a
balance between mixing rate and communication burden.
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Introduction: Decentralized Composite Optimization

Problem Setting Continued

Each fi,j : Rd → R is L-smooth and convex:

fi,j(y)− fi,j(x) ≤ ⟨∇fi,j(x), y − x⟩+ L

2
∥y − x∥2;

Each fi,j : Rd → R is µ-strongly convex:

fi,j(y)− fi,j(x) ≥ ⟨∇fi,j(x), y − x⟩+ µ

2
∥y − x∥2.

We denote the condition number κ := L
µ

to measure the hardness of the problem;

Learning objective: let x∗ be the global minimizer:

max
{ 1

m

m∑
i=1

||xt
i − x̄t||2, ||x̄t − x∗||2

}
< ϵ;

Metric:
Computational complexity: the number of evaluations of ∇fij(·);
Communication complexity: the number of decentralized communications.
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Algorithm Development

Distributed SGD

We assume that r(x) = 0 for simplicity and return to the composite case later.

A centralized node (parameter sever) aggregates local gradients gi and perform
update:

xt+1 = xt − η
1

m

m∑
i=1

gi;

Distributed SGD is essentially the mini-batch SGD;

The consensus error is zero after one communication: 1
m
||xt − 1x̄t||2 = 0;

The convergence error decreases similarly with the (mini-batch) single-agent SGD:
||x̄t − x∗||2.
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Algorithm Development

Decentralized SGD

Agents update with local gradient and average the variables by decentralized
communication:

xt+1
i = (Wxt)i − η∇fi,ji(x

t
i),

where ji ∼ Unif{1, 2, · · · , n};
Convergence rate with a constant learning rate:

lim sup
t→∞

1

n

n∑
i=1

E
[∥∥xt

i − x∗∥∥2

2

]
= O

(
ησ2

mµ
+

η2κ2σ2

1− λ2(W )
+

η2κ2 ∑m
i=1 ||∇fi(x

∗)||2

m(1− λ2(W ))2

)
,

where σ2 is the upper bound of the variances of the local gradient noise;

The third bias term is from the dissimilarity among the datasets across m agents;

Moreover, x∗ is not a fixed point of the update in expectation since ∇fi(x
∗) ̸= 0 in

general.
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Algorithm Development

Gradient Tracking (GT) SGD

Challenge of DSGD: local agents have no access to the global gradient (of f(x));

Solution: Maintain an estimator sti to approximate ∇f(x̄t) by communicating local
gradients;

Update rule:
xt+1
i = (Wxt)i − sti,

st+1
i = (W st)i +∇fi,ji(x

t+1
i )−∇fi,ji(x

t
i).

Dynamic tracking: Es̄t = 1
m

∑m
i=1 ∇fi(x

t
i);

Tracking error: ||∇f(x̄t)− E[s̄t]|| ≤ L√
m
||xt − 1x̄t||;

With decentralized communications, we can show that

∀i ∈ [m], xt
i → x̄t and s̄ti → s̄t → ∇f(x̄t);

With a well-connected network, the convergence behavior of GT-DSGD is
determined only by the step-size sequence and the variance of the local stochastic
gradient, which is similar to SGD.
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Algorithm Development

GT Variance Reduction (VR)

The convergence error of SGD cannot shrink exponentially:

∇fi,ji(x) is an unbiased estimator of ∇fi(x);

The variance requires a decreasing sequence of learning rate;

Solution: each agent i maintains a variance-reduction estimator of ∇fi(x);

Let wt
i be the most recent iterate at which ∇fi(·) is evaluated;

Agent i replaces ∇fi,ji(x
t
i) with SVRG-style gradient estimator:

vt
i = ∇fi,ji(x

t
i)−∇fi,ji(w

t
i) +∇fi(w

t
i),

Gradient tracking framework to mix local estimators:

xt+1
i = (Wxt)i − sti,

st+1
i = (W st)i + vt+1

i − vt
i .

Update wt+1
i := xt

i with probability 1/n;

Convergence rate compared to SVRG:

O
(
(n+

κ2 log κ

(1− λ2(W ))2
) log

1

ϵ

)
v.s. O

(
(n+ κ) log

1

ϵ

)
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Algorithm Development

Multi-consensus GT-VR

Challenge: the mixing rate may not match the convergence rate;

Observation: mixing rate can be improved by involving K communication rounds:

∥WKx− 1

m
11⊤x∥ ≤ λ2(W )K ||x− 1

m
11⊤x||

K = ∞: return to the distributed setting with ∥W∞x− 1
m
11⊤x∥ = 0;

An appropriate K to “improve” the mixing rate and to match the convergence rate;

Multi-consensus + Gradient Tracking + Variance Reduction (PMGT-VR):

Algorithm 1 PMGT-VR Framework

1: Input: x0
i = x0

j for 1 ≤ i, j,≤ m, v−1 = s−1 = ∇F (x0), η, and K

2: for t = 0, . . . , T do
3: Update the local stochastic gradient estimators vt;
4: Update the local gradient trackers as st = WK

(
st−1 + vt − vt−1

)
.

5: Update: xt+1 = WK(xt − ηst);
6: end for
7: Output: xT+1.
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Algorithm Development

Fast Mixing

One advantage of multi-consensus is that the K communications can be naturally
accelerated;

By using Chebyshev acceleration or FastMix subroutine, the communication rounds
for one iteration is improved:

(log κ+ logn) · 1

(1− λ2(W ))
→ (log κ+ logn) · 1√

1− λ2(W )
;

Trade-off between a fast mixing rate λ2(W ) ≈ 1− 1
log2(m)

and the communication

burden logm (the maximum degree of the node).

Figure: An exponential graph. [3]
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Main Result

Theorem

Let K = 1√
1−λ2(W )

log 1
ρ
where ρ satisfies ρ ≤ 1

41
min

(
1

24κ
, 1
4n

)
, and let step-size

η = 1/(12L). Then, it holds that

E
[
||x̄t − x∗||

]
≤ max

(
1−

1

24κ
, 1−

1

4n

)t (
V 0 +

∥∥z0∥∥)
E
[
1

m

∥∥xt − 1x̄t
∥∥2] ≤ max

(
1−

1

24κ
, 1−

1

4n

)t

·
(
V 0 +

∥∥z0∥∥) .

Methods Problem Complexity of computation Complexity of communication

GT-SVRG [3] f O
(
(n+ κ2 log κ

(1−λ2(W ))2
) log 1

ϵ

)
O

(
(n+ κ2 log κ

(1−λ2(W ))2
) log 1

ϵ

)
NIDS [2, 4] f + r O

(
n(κ+ 1

(1−λ2(W ))
) log 1

ϵ

)
O

(
(κ+ 1

(1−λ2(W ))
) log 1

ϵ

)
Our methods f + r O

(
(n+ κ) log 1

ϵ

)
O

(
(n logn+κ log κ)√

1−λ2(W )
log 1

ϵ

)
Table: Complexity comparisons between PMGT-VR algorithms and existing works for strongly
convex problem.

Wei Xiong (HKUST) HKUST Dec 9, 2022 14 / 19



Algorithm Development

Proof Sketch: Relate Error Terms

We consider the following error terms.

Consensus error: zt = [ 1
m
||xt − 1x̄t||2, η2

m
||st − 1s̄t||2]⊤;

Gradient learning error: ∆t = 1
mn

∑m,n
i,j=1 ∥∇fi,j(w

t
i)−∇fi,j(x

∗)∥2;

Convergence error: ||x̄t − x∗||;
We have the following derivation:

Gradient tracking: ||∇f(x̄t)− E[s̄t]|| ≤ L√
m
||xt − 1x̄t||;

Decentralized communication: ||xK − 1x|| ≤ ρ||x0 − 1x||, x̄ = 1
m
1⊤xK with

ρ = (1−
√

1− λ2(W ))K ;

Update rule.

These component together lead to a inequality system:

E
[
z
t+1

]
≤ 2ρ

2 ·
([

4, 4
8(8ρ2 + 1)L2η2, 64ρ2η2L2 + 1

]
· zt

+ η
2

[
0

8L2(||x̄t+1 − x∗||2 + ||x̄t − x∗||2) + 4(∆t+1 + ∆t)

])
.
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Approximate the Centralized Algorithm

We can directly set a sufficiently large K to get a small enough ρ;

E
[
z
t+1

]
≤ 2ρ

2 ·
([

4, 4
8(8ρ2 + 1)L2η2, 64ρ2η2L2 + 1

]
· zt

+ η
2

[
0

8L2(||x̄t+1 − x∗||2 + ||x̄t − x∗||2) + 4(∆t+1 + ∆t)

])
.

Then, x̄t behaves as a centralized one and can be analyzed by standard framework
for SGD-type algorithm [1];

On the contrary, the previous work carefully designed the system so that there exists
a feasible solution of hyper-parameters, which may be sub-optimal (e.g.

η = O
(µ(1−λ2

2(W ))

L2

)
for GT-SVRG).
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Experiments: Comparison with Existing Methods

Figure: Performance comparison with n = 6400 and σi = n× 10−7 for all agents. From the left
to the right, the network becomes less-connected (slow mixing rate).
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Experiments with Different K

Figure: Performance comparison for PMGT-LSVRG under different consensus steps K with
n = 6400 and σi = n× 10−7. From the left to the right, the network becomes less-connected
(slow mixing rate).
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