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Introduction: Offline Learning of Two-Player Zero-Sum Markov Game

Two-Player Zero-Sum Markov Game

Two-Player Zero-Sum Markov Game (MG):M(S,A1,A2, H,P, r)
S: set of states; A1,A2: set of actions for the max-player1 / min-player;

H: time horizon, length of the game;

rh(xh, ah, bh) ∈ [0, 1]: reward function of the max-player at step h;

Ph(xh+1|xh, ah, bh): transition probability at step h.

1The player aims to maximize the cumulative rewards hence the name.
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Introduction: Offline Learning of Two-Player Zero-Sum Markov Game

Policy, Value, and Nash Equilibrium

Policy: mappings from state to a distribution of action: π = {πh : S → ∆A1} and
ν = {νh : S → ∆A2}
Value: Expected cumulative reward starting from step h:

V-value: V π,ν
h (xh) = Eπ,ν [

∑H
h′=h rh′ (xh′ , ah′ , bh′ ) | xh];

Q-value: Qπ,ν
h (xh, ah, bh) = Eπ,ν [

∑H
h′=h rh′ (xh′ , ah′ , bh′ ) | xh, ah, bh].

Best response (the strongest opponent):

V π,∗
h = V

π,br(π)
h = infν V π,ν

h ;

V ∗,ν
h = V

br(ν),ν
h = supπ V π,ν

h

Nash Equilibrium (NE): (π∗, ν∗) is an NE if
they are best response to each other;
V ∗
h is the Nash Value of (π∗, ν∗);

Learning objective: finding a pair (π̂, ν̂) such that for any x ∈ S,

SubOpt((π̂, ν̂), x) := V ∗,ν̂
1 (x)− V π̂,∗

1 (x) < ϵ.
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Introduction: Offline Learning of Two-Player Zero-Sum Markov Game

Offline Learning

Offline learning means that we learn the policy from a pre-determined dataset without
further interaction with the environment.

The dataset D = {(xτ
h, a

τ
h, b

τ
h)}K,H

τ,h=1 is collected by some behavior policy
independently;

The MG possesses a linear structure with a known feature ϕ(x, a, b) ∈ Rd:

rh(x, a, b) = ϕ(x, a, b)⊤θh, Ph(·|x, a, b) = ϕ(x, a, b)⊤µh(·);

Tabular MG with finite state and action spaces is a special case of Linear MG;

Goal: learn an ϵ-approximate NE with a sample complexity polynomial in
(
1
ϵ
, H, d

)
;

Problem: what is the minimal dataset assumption that permits efficient learning?
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Impossibility Result

Existing Results of Offline MDP

Single-policy (optimal policy) coverage is the necessary and sufficient condition for
sample-efficient learning.

Tabular MDP [4, 3, 2]: with b denoting the behavior policy:

sup
x,a,h

dπ
∗

h (x, a)

dbh(x, a)
≤ C∗

Linear MDP [1]

Eπ∗ [
H∑

h=1

ϕ⊤
h Λ

−1
h ϕh], whereΛh =

K∑
k=1

ϕk
h(ϕ

k
h)

⊤ + λId.

Q: Single-policy (NE) coverage is necessary and sufficient for Markov Games?
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Impossibility Result

Single-policy (NE) coverage is Insufficient

Consider the matrix (bandit) gameM1 andM2 with payoff matrices:

G1 =

 0.5 −1 0
1 0 1
0 −1 0

 G2 =

 0 0 −1
1 0 −1
1 1 0


Given a dataset that is consistent with bothM1 andM2 and let π̂ = (p1, p2, p3)
and ν̂ = (q1, q2, q3) be the learned policy:

SubOptM1
((π̂, ν̂), x) + SubOptM2

((π̂, ν̂), x) ≥ 2

Either SubOptM1
((π̂, ν̂), x) or SubOptM2

((π̂, ν̂), x) is larger than 1;

Conclusion: Single-policy (NE) coverage is not sufficient for Markov Games.

Wei Xiong (HKUST) HKUST Dec 9, 2022 9 / 21



Impossibility Result

What is the Sufficient Coverage Condition?

Suppose thatM1 with G1 =

 0.5 −1 0
1 0 1
0 −1 0

 is the ground truth.

Intuition: the second unilateral concentration condition ensures us to verify that
π∗ and ν∗ are the best response to each other (definition of NE).
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Unilateral Concentration is Sufficient and Necessary

Pessimistic Minimax Value Iteration (PMVI)

Suppose that we have constructed V h+1 and V h+1. We employ the fact that the
Bellman equation is linear in the feature.

Estimate the linear coefficient by least-squares regression;

wh ← argmin
w

K∑
τ=1

[rτh + V h+1(x
τ
h+1)− (ϕτ

h)
⊤w]2 + ∥w∥22,

wh ← argmin
w

K∑
τ=1

[rτh + V h+1(x
τ
h+1)− (ϕτ

h)
⊤w]2 + ∥w∥22,

Pessimistic Q value with penalty term Γh(x, a, b) = β
√

ϕ(x, a, b)⊤Λ−1
h ϕ(x, a, b):

Q
h
(·, ·, ·)← ΠH−h+1{ϕ(·, ·, ·)⊤wh − Γh(·, ·, ·)},

Qh(·, ·, ·)← ΠH−h+1{ϕ(·, ·, ·)⊤wh + Γh(·, ·, ·)}.

Compute the output policy pair (NE subroutines):

(π̂h(· | ·), ν′h(· | ·))← NE(Q
h
(·, ·, ·)), (π′

h(· | ·), ν̂h(· | ·))← NE(Qh(·, ·, ·)).
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Unilateral Concentration is Sufficient and Necessary

Main Result

Theorem ([7])

Let β = O
(
dH

√
log(2dKH/δ)

)
, it holds with probability 1− δ that

SubOpt
(
(π̂, ν̂), x

)
≤ 4β · RU(D, x).

which features a new notion, Relative Uncertainty:

RU(D, x) = max
{
sup
ν

H∑
h=1

Eπ∗,ν

[√
ϕ⊤
h Λ−1

h ϕh

∣∣∣ x1 = x
]
, sup

π

H∑
h=1

Eπ,ν∗
[√

ϕ⊤
h Λ−1

h ϕh

∣∣∣ x1 = x
]}

.

Data-dependent bound: Λ−1
h is fully determined by the offline dataset;

Unilateral Concentration: {(π∗, ν), (π, ν∗) : π, ν are arbitrary}.

Conclusion: Low relative uncertainty is sufficient for sample-efficient learning.
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Unilateral Concentration is Sufficient and Necessary

Low Relative Uncertainty is Necessary

Minimax Lower Bound:

ED
SubOpt(Alg(D);x)

RU(D, x) ≥ C′,

where C′ is an absolute constant and x is the initial state. The expectation is
taken with respect to the dataset generalization.

Conclusion: Low relative uncertainty is necessary for sample-efficient learning.
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Summary

Conclusion and Future Directions

We propose the first line of work studying the dataset condition that permits
efficient multi-agent offline RL;

We figure out that low relative uncertainty is the necessary and sufficient condition
for achieving sample efficiency in offline linear MGs setup;

The suboptimality bound is O
(√

dH
)
away from the minimax lower bound;

Once can leverage (1) reference-advantage decomposition and (2) weighted
regression to achieve an optimal sample complexity at a cost of stronger
assumptions [5].
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Summary

Rewrite the Problem

Given V̂h+1, the essential problem is to construct an estimator of

Q̃h(x, a) := ThV̂h+1(x, a) := rh(x, a) + Exh+1|x,aV̂h+1(xh+1) = w⊤
h ϕ(x, a),

with D := {xτ
h, a

τ
h}Kh,τ=1 such that the following inequality holds with high probability:

|ŵ⊤ϕ(x, a)− w⊤
h ϕ(x, a)| ≤ Γh(x, a).

A sharper estimator of the linear coefficient leads to a better regret bound:

SubOpt(π̂, x) ≤ Eπ∗|x1=x

H∑
h=1

Γh(x, a), π̂ greedy in Q̂h;

Let Q̂h be the least-squares solution. Hoeffding+ uniform concentration gives∣∣∣Q̃h(x, a)− Q̂h(x, a)
∣∣∣ ≲ ||∑

τ∈D
ϕ (xτ

h, a
τ
h) · ξ

τ
h(V̂h+1)||Λ−1

h︸ ︷︷ ︸
(A) ≤ β = Õ(dH)

||ϕ(x, a)||
Λ−1
h

,

with Λh = λI +
∑K

τ=1 ϕ(x
τ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤, ξτh(f) = f(xτ
h+1) + rτh − (Thf)(xτ

h, a
τ
h).

Wei Xiong (HKUST) HKUST Dec 9, 2022 17 / 21



Summary

What Causes Suboptimality?

∣∣∣Q̃h(x, a)− Q̂h(x, a)
∣∣∣ ≲ ||

∑
τ∈D

ϕ (xτ
h, a

τ
h) · ξ

τ
h(V̂h+1)||Λ−1

h︸ ︷︷ ︸
(A) ≤ β = Õ

(
H
(√

d+

√
logN (V̂h+1)

))
||ϕ(x, a)||

Λ−1
h

,

V̂h+1 ∈ Fh ⊕ {Γh+1} is computed by later least-square value iteration thus
depending on the data at step h;

The issue is solved by a uniform concentration over ϵ-net, paying for a covering
number: improve the d-dependency:√

logN (Fh) =
√
d v.s.

√
logN (Fh ⊕ {Γh+1}) = d;

Leverage the variance information to improve the Horizon-dependency:
Hoeffding: range H;

Bernstein: conditional variance of ξτh(V̂h+1): σ = H;
Directly using Bernstein-type inequality offers no advantage.
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Summary

Improve the d-dependency

The key observation is that both the Bellman operator and the estimator are linear in the
target:

Th(f + g) = Thf + Thg;
ŵh(f + g) = ŵh(f) + ŵh(g).

Reference-Advantage Decomposition by V ∗
h+1:

|⟨ŵh(V̂h+1), ϕ(x, a)⟩ − ThV̂h+1(x, a)| ≤

|⟨ŵh(V
∗
h+1), ϕ(x, a)⟩ − ThV

∗
h+1(x, a)|︸ ︷︷ ︸

Reference

+ |⟨ŵh(V̂h+1 − V
∗
h+1), ϕ(x, a)⟩ − ThV̂h+1(x, a)|︸ ︷︷ ︸

Advantage

Reference with deterministic V ∗
h+1: no need for uniform concentration thus

improving
√
d;

Advantage: ||V̂h+1 − V ∗
h+1||∞ = Õ

(√
dH2

√
Kκ

)
2: leading to a high-order concentration

error of advantage part.

2This requires a stronger coverage condition.
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Summary

Improve the H-dependency

Weighted Regression [6]: assigning sample-dependent weights in the regression
subroutine.

argmin
w∈Rd

∑
τ∈D

[
ϕ(xτ

h, a
τ
h)

⊤w − rτh − fh+1 (x
τ
h+1)

]2
σ̂2
h(x

τ
h, a

τ
h)

+ λ∥w∥22

Suppose that σ̂2
h(·, ·) ≈ Var[rτh + fh+1(x

τ
h+1)− (Thfh+1)(x

τ
h, a

τ
h)|xτ

h, a
τ
h]

3

The conditional variance of ξτh(fh+1) =
rτh+fh+1(x

τ
h+1)−(Thfh+1)(x

τ
h,aτ

h)

σ̂h(xτ
h
,aτ

h
)

is O(1);

The Bernstein’s inequality implies a Õ(
√
d · 1)||ϕ(x, a)||

Σ−1
h

with

Σ−1
h =

( ∑
τ∈D

ϕ(xτ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤

σ̂2
h(x

τ
h, a

τ
h)

+ λI
)−1

≼ H2Λ−1
h ;

The new bonus with weighted regression is never worse than the regular√
dH||ϕ(x, a)||

Λ−1
h

;

The new bonus is in an instance-dependent manner and can provide faster rates for
many instances.

3This holds for a stronger coverage condition.
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