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Bradley-Terry (BT) model : 𝒫⋆
BT(a1 ≻ a2 ∣ x, a1, a2) =

er⋆(x,a1)

er⋆(x,a1) + er⋆(x,a2)

Imperfect but scalable



Direct preference optimization (DPO)

• Gibbs distribution


Rafailov, Rafael, et al. Direct preference optimization: Your language model is secretly a reward model. NeurIPS 2024.

πr( ⋅ ∣ |x) = max
π [𝔼a∼π(⋅∣x)[r(x, a)] − ηKL(π( ⋅ ∣ x), πref( ⋅ ∣ x))] =

1
Z(x)

⋅ πref( ⋅ ∣ x) ⋅ exp( 1
η

r(x, ⋅ ))
• Re-parameterize reward by policy:


r(x, a) = η log
πr(a ∣ x)

πref(a ∣ x)

Implicit reward

+ η log Z(x)

• MLE in reward space -> policy optimization:


ℒDPO(θ) = − ∑
(x,aw,al)∈𝒟

log σ(η[log
πθ(al ∣ x)
πref(al ∣ x)

− log
πθ(aw ∣ x)
πref(aw ∣ x) ]) .

Fact: If no approximation error + no optimization error:
DPO admits the same optimal policy as RLHF 

 will be cancelled in reward differencelog Z(x)



Multi-turn math problem solving with external tool
• LLM as a math agent in tool-integrated reasoning


arg max
π

J(π; ℳ⋆, πref) = 𝔼x∼d0
𝔼ah∼πh(⋅∣sh),oh∼ℙh(⋅∣sh,ah) [u⋆(x, y) − η

H

∑
h=1

KL(πh( ⋅ ∣ sh), πref,h( ⋅ ∣ sh))] .

• Trajectory preference model


• Learning objective


𝒫⋆
BT(y1 ≻ y2 ∣ x, y1, y2) =

eu⋆(x,y1)

eu⋆(x,y1) + eu⋆(x,y2)

τ = (x, a1, o1, ⋯, oH−1, aH

y

) .

s1 = x ∼ d0, a1 ∼ π1( ⋅ ∣ s1), o1 ∼ ℙ1( ⋅ ∣ s1, a1), s2 = (s1, a1, o1) . . . ;



Optimality condition: layer-wise Q-Gibbs distributions

Initialize: Qℳ,H(sH, aH) = u(sH, aH)

πℳ,H( ⋅ ∣ sH) = arg max
πH

𝔼aH∼πH(⋅∣sH)(Qℳ,H(sH, aH) − η ⋅ KL(πH( ⋅ ∣ sH), πref,H( ⋅ ∣ sH))) ∝ πref,H( ⋅ ∣ sH) ⋅ exp (
Qℳ,H(sH, ⋅ )

η ) .

Vℳ,H(sH) = 𝔼aH∼πℳ,H(⋅∣sH)[Qℳ,H(sH, aH) − η ⋅ KL(πH( ⋅ ∣ sH), πref,H( ⋅ ∣ sH)] .

Step H: single-step decision making, similar to the original DPO

Gibbs distribution
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Initialize: Qℳ,H(sH, aH) = u(sH, aH)

πℳ,H( ⋅ ∣ sH) = arg max
πH

𝔼aH∼πH(⋅∣sH)(Qℳ,H(sH, aH) − η ⋅ KL(πH( ⋅ ∣ sH), πref,H( ⋅ ∣ sH))) ∝ πref,H( ⋅ ∣ sH) ⋅ exp (
Qℳ,H(sH, ⋅ )

η ) .

Vℳ,H(sH) = 𝔼aH∼πℳ,H(⋅∣sH)[Qℳ,H(sH, aH) − η ⋅ KL(πH( ⋅ ∣ sH), πref,H( ⋅ ∣ sH)] .

Step H:

Step H-1: treat the future as a meta step
Qℳ,H−1(sH−1, aH−1) = 𝔼oH−1∼ℙH−1(⋅∣sH−1,aH−1)[Vℳ,H(sH)] .

πℳ,H−1( ⋅ ∣ sH−1) ∝ πref,H−1( ⋅ ∣ sH−1) ⋅ exp (
Qℳ,H−1(sH−1, ⋅ )

η ) .

……

Step H: single-step decision making, similar to the original DPO

Vℳ,H−1(sH−1) = 𝔼aH−1∼πℳ,H−1(⋅∣sH−1)[Qℳ,H−1(sH−1, aH−1) − η ⋅ KL(πH−1( ⋅ ∣ sH−1), πref,H−1( ⋅ ∣ sH−1)] .



Multi-turn direct preference learning: re-parameterize

u(sH, aH) = η
H

∑
h=1

log
πℳ,h(ah ∣ sh)
πref,h(ah ∣ sh)

term (A)

+ Vℳ,1(s1)

term (B)

+
H−1

∑
h=1

[Vℳ,h+1(sh+1) − 𝔼oh∼ℙh(⋅∣sh,ah)Vℳ,h+1(sh+1)]
term (C)

.

• Re-parameterization trick to connect the model with the policy


• Term (C) cannot be directly computed except for


• : original DPO


•  is deterministic given the history 


•

H = 1

oh

ℒM-DPO(θ) = − ∑
(x,τw,τl)∈𝒟

log σ(η
H

∑
h=1

[log
πθ,h(al

h ∣ sl
h)

πref,h(al
h ∣ sl

h)
− log

πθ,h(aw
h ∣ sw

h )
πref,h(aw

h ∣ sw
h ) ]) .

Term (B) will be cancelled in reward difference

Implementation: mask out the external messages.

ℓ𝒟(θ) = ∑
(x,τw,τl)∈𝒟

log(σ(uθ(x, yw) − uθ(x, yl)))

Vℳ,h(sh) = 𝔼ah′ ∼πℳ,h′ (⋅∣sh′ ),h′ ≥h[u(sH, aH) − η ⋅ ∑
h′ ≥h

KL(πh′ ( ⋅ ∣ sh′ ), πref,h′ ( ⋅ ∣ sh′ ))] .



Multi-turn direct preference learning: re-parameterize

u(sH, aH) = η
H

∑
h=1

log
πℳ,h(ah ∣ sh)
πref,h(ah ∣ sh)

term (A)

+ Vℳ,1(s1)

term (B)

+
H−1

∑
h=1

[Vℳ,h+1(sh+1) − 𝔼oh∼ℙh(⋅∣sh,ah)Vℳ,h+1(sh+1)]
term (C)

.

• Re-parameterization trick to connect the model with the policy


• Term (C) can be estimated if 


• we train a value network simultaneously 


• use MC estimation 


•

Term (B) will be cancelled in reward difference

Direct learning from dataset seems to be impossible.



Motivating example
• Force model to predict the low-quality external message can hurt the model performance




Warm-up SFT: Reward-rAnked Fine-Tuning (RAFT)

-  Dong H, Xiong W, et al. Raft: Reward ranked finetuning for generative foundation model alignment. TMLR, 2023.(α β)

• We use an open-source dataset collected by best-of-n sampling and final result checking 


• 510K correct trajectories on MATH and GSM8K




Learning with a fixed preference dataset is suboptimal

All policy coverage: MLE is efficient. Data only covers : pessimistic MLE 
policy can compete with the best among them.

π1, π2

• Along the way of PPO training, the KL divergence can be  


Q

> 30

We generally cannot expect a good coverage from a fixed dataset.
Related studies on the role of pessimism in offline learning
Xiong W*, Zhong H*, She C, et al. Nearly minimax optimal offline reinforcement learning with linear function approximation: Single-agent MDP and Markov game. ICLR 2023.
Zhong H*, Xiong W*, Tan J*, et al. Pessimistic minimax value iteration: Provably efficient equilibrium learning from offline datasets. ICML 2022.



Batch online exploration
• For 


• Exploit the historical information to get  by running M-DPO based on  with


• Explore: maximize the data diversity by  variant


• Use checkpoints at different training steps 


• Use more advanced sampling strategy (bon sampling/MCTS)


• Generate  pairs as 


• For each prompt we generate a pair with a correct trajectory and wrong trajectory


t = 1,2,3...

π1
t 𝒟1:t−1

π1
t

m 𝒟t

πt
ref( ⋅ ∣ x) = π1

t−1



Batch online exploration
• For 


• Exploit the historical information to get  by running M-DPO based on  with


t = 1,2,3...

π1
t 𝒟1:t−1

Xiong W, Dong H, Ye C, et al. Iterative preference learning from human feedback: Bridging theory and practice for RLHF under KL-constraint, ICML 2024

πt
ref( ⋅ ∣ x) = π1

t−1

Left: fixed reference model. Right: πt
ref = π1

t−1
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Preference learning improves top-k responses



Discussion

+ Easy to implement, stable training 

- The DPO is not equivalent to RLHF in practice

Easy to approximate  (by transformer) but not u log π/πref

Optimization error exists in practice

- Bradley Terry model may not be a reasonable assumption beyond the chat style

- DPO cannot be scaled: the best model is achieved at ~30K-50K samples
The best practice of DPO may be focusing on improving the data quality



Thanks for listening!

Check out more details in our paper!


