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AN INTRODUCTION TO ELUDER COEFFICIENT: THEO-
RETICAL FRAMEWORK AND ALGORITHMIC DESIGN

Wei Xiong ∗

ABSTRACT

We are interested in online decision-making problems with general function ap-
proximation. We find that the existing techniques can be largely divided into two
groups: 1) the eluder technique, which relates the out-of-sample target to the in-
sample historical error; 2) the decoupling technique, which relates the out-of-
sample target to another out-of-sample target but may be easier to handle. Tech-
nically, the first framework reduces the problem into an in-sample supervised
learning problem, while the second framework reduces the problem into an on-
line learning problem. We introduce the eluder coefficient, as a representative of
the first type of complexity measure, which contains nearly all known tractable
problems. Along the line, we also present some new algorithms to solve problems
with a low eluder coefficient. We hope this note helps to provide a better under-
standing and interpretation of various algorithmic ideas in the literature, including
optimism, attempts for handling the double-sampling issue, UCB, and posterior
sampling. If you have any questions, feel free to contact me!
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1 INTRODUCTION

Markov decision process (MDP). A MDP is specified by a tuple (S,A, H,P, r), where S is the
state space, A is the action space, H is the episode length, P = {Ph}Hh=1 and r = {rh}Hh=1 are
the state transition kernels and reward functions, respectively. For each h ∈ [H], Ph(·|x, a) is the
distribution of the next state given the state-action pair (x, a) at step h, rh(x, a) ∈ [0, 1] is the
deterministic reward given the state-action pair (x, a) at step h. The key property of the MDP is that
the transition kernel satisfies the Markov property, i.e., Ph(xh+1 | x1, a1, · · · , xh, ah) = Ph(xh+1 |
xh, ah) for any h ∈ [H] and (x1, a1 · · ·xh, ah, xh+1) ∈ Sh+1 ×Ah.

Figure 1: An illustration of MDP with episode length H .

A Markovian policy π = {πh : S → ∆A}h∈[H] maps each state to a distribution over actions.
Given a Markovian policy π, its Q-function and value function at step h are defined as expected
cumulative rewards, given the current state (or state-action pair):

Qπ
h(x, a) = Eπ

[ H∑
h′=h

rh′

∣∣∣xh = x, ah = a
]
, V π

h (x) = Eπ

[ H∑
h′=h

rh′

∣∣∣xh = x
]
.

It immediately follows that the following Bellman equation holds:

Qπ
h(x, a) = (ThV π

h+1)(x, a) := rh(x, a) + Ex′∼Ph(·|x,a)V
π
h+1(x

′), ∀π, x, a. (1)

Here Th is referred to as the Bellman operator at step h. We also use π∗ = {π∗
h}h∈[H], V ∗ =

{V ∗
h }h∈[H], and Q∗ = {Q∗

h}h∈[H] to denote the optimal (Markovian) policy, optimal value function
and optimal Q-function, respectively, where they satisfy the following properties Sutton & Barto
(2018):

Qπ∗

h (x, a) = Q∗
h(x, a) = sup

π
Qπ

h(x, a) ∀(x, a) ∈ S ×A,

V π∗

h (x) = V ∗
h (x) = sup

π
V π
h (x) ∀x ∈ S,

(2)

and one optimal policy π∗ is the greedy policy induced by Q∗. It is also well known that (Q∗, V ∗)
satisfies the Bellman optimality equation for any (h, x, a) ∈ [H]× S ×A:

Q∗
h(x, a) = (ThV ∗

h+1)(x, a), V ∗
h (x) = max

a∈A
Q∗

h(x, a). (3)

For simplicity, we additionally assume that the first state is a fixed one x1

Learning objective. We consider the following regret minimization problem for T iterations in
total:

Reg(T ) =

T∑
t=1

V ∗
1 (x1)− V πt

1 (x1).

The goal is to design an algorithm to solve the underlying MDP with a sub-linear (in T ) regret.
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1.1 TABULAR MDP

For a tabular MDP, we assume that the state space S and action space A are small. But we do
not impose any structural assumption across states and actions. The goal in the tabular case is to
design algorithms that achieve a regret depending polynomially on S,A and also the horizon H .
The tabular MDP has been extensively studied in the literature (Auer et al., 2008; Azar et al., 2017;
Dann et al., 2017; Jin et al., 2018; Agrawal & Jia, 2017; Zanette & Brunskill, 2019; Zhang et al.,
2020; 2021; Ménard et al., 2021; Li et al., 2021; Wu et al., 2022; Zhang et al., 2022). Among them,
Azar et al. (2017) designs a model-based algorithm UCB-VI that explicitly models the transition
matrix of the MDP, and attains the minimax-optimal regret bound O(

√
H2SAT ). After this, Zhang

et al. (2020) closes the gap to the lower bound in the model-free setting by leveraging the idea of
variance reduction by a reference function Johnson & Zhang (2013). Since both the model-based
and model-free algorithms attain the minimax-optimal regret bound, the tabular settings are well-
studied. However, since the lower bound depends on the

√
SA, we cannot handle modern RL

problems with large state space without further structural assumptions.

The idea is to employ function approximation either the model dynamics (the transition kernel and
the reward function), the value functions (e.g. Q∗, V ∗, Qπ), or the policy by an abstract hypothesis
space H. We always assume that H is finite to illustrate the idea and it can be readily extended to
the infinite class with a mild covering number by standard discretization technique.

1.2 SUPERVISED LEARNING

Before we dive into the details of RL, we first review some classic results from supervised learning.
We assume (X,Y ) is sampled from some unknown distribution P (X,Y ). For a fixed a hypothesis
f ∈ H, the population risk is given by

L(f) = E(X,Y )∼P ℓ(f(X), Y ),

where ℓ(·, ·) is a loss function, e.g., ℓ(f(x), y) = 1
2 (f(x) − y)2. Given a data set D =

{(X1, Y1), · · · , (Xn, Yn)}, we also define the empirical risk as

L̂(f) =
1

n

n∑
i=1

ℓ(f(Xi), Yi).

Clearly, we have EP L̂(f) = L(f). According to the plug-in principle, we can adapt the ERM
method (empirical risk minimization):

f̂ := argmin
f∈H

L̂(f). (4)

What do we care about? Suppose that the minimizer of L(f) is f∗ ∈ H. Here we assume
0 ≤ ℓ(·, ·) ≤ b for simplicity (sub-Gaussian assumption). What we are really concerned about is the
performance of f̂ on the out-of-sample samples, i.e., the population risk L(f̂). We can decompose
the performance difference as follows.

L(f̂)− L(f∗) =
(
L(f̂)− L̂(f̂)

)
︸ ︷︷ ︸

A

+
(
L̂(f̂)− L̂(f∗)

)
︸ ︷︷ ︸

B

+
(
L̂(f∗)− L(f∗)

)
︸ ︷︷ ︸

C

We first note that B ≤ 0 because f̂ minimizes L̂(·). Term C can be directly controlled by Hoeffd-
ing’s inequality. However, we cannot apply it to the term A because {ℓ(f̂(Xi, Yi) : i = 1, 2, · · · , n}
are not independent since f̂(·) is obtained via a minimization problem over the data set D and conse-
quently the i.i.d. assumption over D does not hold for ℓ(Xi, Yi). We can use the following uniform
concentration argument to solve this problem.

We first note that for a sequence of i.i.d. random variables {Xk}nk=1, {f(Xk)}nk=1 are also i.i.d. for
any fixed function. We take δf = δ

|H| to construct a concentration bound for each f ∈ H. Then,
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applying a union bound over all f ∈ H:

P
(
sup
f∈H

|L(f)− L̂(f)| > b

√
1

2n
log

2

δ/|H|

)
≤

∑
f∈H

P
(
|L(f)− L̂(f)| > b

√
1

2n
log

2

δ/|H|

)
≤ |H| × δ

|H|
= δ,

(5)
where we use the boundedness assumption in the second inequality to apply Hoeffding’s inequality.
We can apply Hoeffding’s inequality here because f in P

(
|L(f)− L̂(f)| >

√
1
2n log 2

δ/|H|

)
is a

fixed function instead of a function obtained via a minimization problem over D. Then, we have

L(f̂)− L(f∗) ≤
(
L(f̂)− L̂(f̂)

)
︸ ︷︷ ︸

A

+
(
L̂(f∗)− L(f∗)

)
︸ ︷︷ ︸

C

≤ sup
f∈H

|L(f)− L̂(f)|+
(
L̂(f∗)− L(f∗)

)
≤ 2 sup

f∈H
|L(f)− L̂(f)| ≤ Õ

( b√
n

)
.

In particular, if the capacity of H is large enough so that L(f∗) = 0 (referred to as the realizability).
We know that it takes Õ

( b2 log |H|
ϵ2

)
samples to ensure that L(f̂) ≤ ϵ with high probability.

1.3 FUNCTION APPROXIMATION IN RL

We now turn to the function approximation in RL where we approximate either the model dynamics
(the transition kernel and the reward function), the value functions (e.g. Q∗, V ∗, Qπ), or the pol-
icy by an abstract hypothesis space H = H1 × · · ·HH . For instance, the DQN (illustrated in 2)
approximates the Q∗ by a deep neural network.

Figure 2: An illustration of DQN.

Linear function approximation and learnability. Linear function approximation is arguably the
most fundamental one Wang et al. (2019); Yang & Wang (2019); Cai et al. (2020); Jin et al. (2020);
Zanette et al. (2020); Ayoub et al. (2020); Modi et al. (2020); Zhou et al. (2021); Zhong & Zhang
(2023); Agarwal et al. (2022); He et al. (2022). Typically, we will assume that we have access to a
d-dimensional feature map of the state-action pair ϕ : S × A → Rd. A natural idea is to assume
that the optimal Q-value Q∗ is linear in this feature, in the sense that there exists a θh ∈ Rd and
||θ∗h|| ≤ B:

Q∗
h(x, a) := ⟨ϕ(x, a), θ∗h⟩ , ∀h ∈ [H]. (6)

In this case, if we choose Hh = {θ ∈ Rd : ||θ|| ≤ B}, we know that θ∗ ∈ H. One may expect that
this is sufficient for sample-efficient learning as both realizability and a mild covering number hold
for linear models. However, the following result shows that realizability itself is not sufficient for
sample-efficient learning.
Proposition 1 (Linear-realizability is not sufficient Wang et al. (2021)). There exists an MDP with
feature map ϕ that satisfies equation 6 but any algorithms must have

EReg(T ) ≳ min{2Ω(d), 2Ω(H)}.
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Challenges in online decision-making problems. We notice that supervised learning and RL are
different in the following sense.

• Supervised learning: {xi, yi}ni=1 i.i.d. from a static distribution Ddata;
• RL: ζ1 ∼ Dπ1 , ζ2 ∼ Dπ2 , · · · , ζT ∼ DπT , distribution shifts all the time!

Therefore, the generalization from the in-sample error to the out-of-sample prediction error in su-
pervised learning no longer holds in RL:

D1, · · · ,Dt−1
?−→ Dt.

Intuitively, we need a different generalization guarantee in online decision-making problems, which
is supposed to be incremental and also can handle the distribution shifts.

More notations. Following Du et al. (2021), we will assume that H can be either model-based or
value-based, and we detail them as follows.
Example 1 (Model-based Hypothesis). A model-based hypothesis class H is a set of models (tran-
sition kernel P and reward function r). In this case, for any f = (Pf , rf ) ∈ H, we denote
πf = {πh,f}h∈[H] and Qf = {Qh,f}h∈[H], Vf = {Vh,f}h∈[H] as the optimal policy and opti-
mal value functions corresponding to the model f , respectively. We also denote the real model by
f∗.
Example 2 (Value-based Hypothesis for MDP). A value-based hypothesis class H is a set of Q-
function, that is, H = {Hh}h∈[H], where Hh = {Qh : S × A → R}. For any f = {Qh}h∈[H],
let Qf = {Qh,f = Qh}h∈[H], Vf = {Vh,f (·) = maxa∈AQh,f (·, a)}h∈[H], and πf = {πh,f (·) =
argmaxa∈AQh(·, a)}h∈[H]. We also denote f∗ = Q∗, where Q∗ is the optimal Q-function.

To further improve readability, sometimes we will also use F for a value-based hypothesis, and
M for a model-based hypothesis to distinguish them. We remark that the main difference between
value-based and model-based hypothesis spaces is whether we use or learn the information of the
transition kernel. For each f ∈ H, we define the Bellman residual as

Eh(f, x, a) := Qh,f (x, a)− (ThVh+1,f )(x, a). (7)

By equation 3, we know that Eh(f∗, x, a) = 0 for all (h, x, a) ∈ [H] × S × A. Throughout this
paper, we will assume that H contains f∗ (c.f. Example 1 or Example 2), which is standard in the
literature (e.g., Jiang et al., 2017b; Jin et al., 2021a; Du et al., 2021; Dann et al., 2021).
Assumption 1 (Realizability). We assume f∗ ∈ H.
Remark 1 (Notions of realizability.). For the model-based hypothesis set M, Assumption 1 means
that the true model M∗ ∈ M. For the value-based hypothesis F , Assumption 1 means that the
Q∗ ∈ F . Clearly, model-based realizability implies value-based realizability. We will see that we
can obtain a sharper result with the model-based hypothesis under realizability.

2 GENERALIZATION IS LIMITED IN LINEAR CASE

One rough intuition is that when the “complexity” of the problems is limited or there exists a certain
underlying structure across different state-action pairs, the generalization cannot be infinite. We
hope to quantify such an ability of generalization. To this end, we first consider a d-dimensional
linear space

H = {f(·) = ϕ(·)⊤θf : ||θf || ≤ 1}.
Given the historical sequence {f1, g1, z1, · · · , ft−1, gt−1, zt−1}, we examine the prediction error on
the unseen data: |ft(zt)− gt(zt)|. We let Σt := λI+

∑t−1
s=1 ϕ(zs)ϕ(zs)

⊤. It follows that

|f(zt)− g(zt)|2 = | ⟨ϕ(zt), θf − θg⟩ |2 ≤ ||ϕ(zt)||2Σ−1
t
||θf − θg||2Σt

≤ ||ϕ(zt)||2Σ−1
t

(
λ+

t−1∑
s=1

|f(zs)− g(zs)|2
)
,

(8)

where we use Cauchy-Schwarz inequality and expand Σt in the last inequality. Therefore, the out-
of-sample prediction error on the unseen zt can be bounded by the (regularized) in-sample training
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error up to a factor of ||ϕ(zt)||2Σ−1
t

, where ||ϕ(zt)||2Σ−1
t

is referred to as the elliptical potential in the
literature Abbasi-Yadkori et al. (2011). The following lemma shows that the potential is small for
most of the time.
Lemma 1 (Elliptical Potential Lemma (Dani et al., 2008; Rusmevichientong & Tsitsiklis, 2010;
Abbasi-Yadkori et al., 2011)). Given λ > 0 and {Xt}Tt=1 ⊂ Rd with ||Xt|| ≤ L for all t ∈ [T ], if
we denote Σt = λI+

∑t
s=1XsX

⊤
s , then ||Xt||Σ−1

t−1
≥ 1 happens for at most 3d

log 2 log
(
1+ L2

λ log 2

)
.

times. It further holds that
T∑

t=1

min{1, ∥xt∥2Λ−1
t−1

} ≤ 2 log
(det(ΛT )

det(λI)

)
≤ 2d log

( trace(λI) + TL2

ddet(λI)1/d

)
.

This implies the following reduction of prediction to the in-sample error.
Theorem 1 (Exploitation is save for linear model). We consider F = {f(·) = ϕ(·)⊤θf : ||θf || ≤ 1}
where ϕ(z) ∈ Rd and ||ϕ(z)|| ≤ 1 for all z ∈ Z . For any sequence of {ft, gt, zt}Tt=1, we have

T∑
t=1

|ft(zt)− gt(zt)|︸ ︷︷ ︸
Prediction error.

≤ Õ
([
d ·

T∑
t=1

[
λ+

t−1∑
s=1

(ft(zs)− gt(zs))
2
]

︸ ︷︷ ︸
Regularized historical error.

]1/2)
.

Proof. Following the idea in equation 8, we decompose the prediction error into the in-sample error
and potential:

T∑
t=1

|ft(zt)− gt(zt)| =
T∑

t=1

|ft(zt)− gt(zt)|{1(||ϕ(zt)||Σ−1
t

≤ 1) + 1(||ϕ(zt)||Σ−1
t

> 1)}

≤
T∑

t=1

min{||ϕ(zt)||Σ−1
t

, 1}||θft − θgt ||Σt +

T∑
t=1

1(||ϕ(zt)||Σ−1
t

> 1)

≲

√√√√ T∑
t=1

min{||ϕ(zt)||2
Σ−1

t

, 1}

√√√√ T∑
t=1

||θft − θgt ||2Σt
+ d log

(
1 +

1

λ

)
≤ Õ

([
d ·

T∑
t=1

[
λ+

t−1∑
s=1

(ft(zs)− gt(zs))
2
]]1/2)

,

where the first inequality uses |ft(zt) − gt(zt)| ≤ 1, and the second inequality holds because of
the Cauchy-Schwarz inequality and some calculations. Finally, we invoke Lemma 1 to bound the
summation of elliptical potentials in the second and last inequalities.

This exactly matches our intuition as it proves that for linear function class, the prediction error can
be controlled by the in-sample error on average, although it is amplified by dimension d.

We can extend the idea in the linear class to a more general setting to handle the RL problems.
Before continuing, one may be curious why the linear Q∗ is not sufficient. To answer this question,
we need to specify the notion of prediction error in RL first.

3 VALUE DECOMPOSITION AND OPTIMISM

Lemma 2 (Regret decomposition). Suppose that we execute πft (i.e., the greedy policy of f t) for
each iteration. Then, it holds that:

Reg(T ) =

T∑
t=1

V ∗
1 (x1)− V

πft

1 (x1) =

T∑
t=1

[V1,ft − V
πft

1 ] +

T∑
t=1

[V ∗
1 − V1,ft ]

≤
T∑

t=1

H∑
h=1

Eπft

[
Eh

(
f t, xt

h, a
t
h

)]
︸ ︷︷ ︸

(I)

−
T∑

t=1

H∑
h=1

Eπ∗
[
Eh

(
f t, xt

h, a
t
h

)]
︸ ︷︷ ︸

(II)

.

(9)
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Proof. The value decomposition lemma has been widely used in the literature (Jiang et al., 2017a;
Cai et al., 2020). We present the proof in the appendix for completeness.

In comparison, term (II) is hard to control in the online setting because we have no knowledge about
π∗ and cannot design algorithms in terms of it. The idea is to adopt the general principle, “Optimism
in the Face of Uncertainty” (OFU, Auer et al. (2002); Dani et al. (2008); Li et al. (2010); Jiang et al.
(2017b); Jin et al. (2021a); Du et al. (2021)) so that V1,ft ≥ V ∗

1 and the second term is eliminated.
In this case, our target becomes the out-of-sample Bellman error:

T∑
t=1

[V1,ft − V
πft

1 ] =

T∑
t=1

H∑
h=1

Eπft

[
Eh

(
f t, xth, a

t
h

)]
.

We mention in passing that in the offline setting, however, we only have a pre-determined dataset D
and T = 1. In this case, controlling term (I) may require a good coverage over all f ∈ H (because
we need to evaluate all f ∈ H with this pre-determined D), which is too strong to hold in practice.
On the other hand, if we adopt the pessimism principle such that V1,f ≤ V

πf

1 , we only need a good
coverage over π∗ (single-policy coverage). We refer interested readers to Jin et al. (2021b) for a
detailed illustration.

4 ELUDER COEFFICIENT

We now extend the idea from the linear class to a more general scenario with the prediction error
identified in the last section.
Definition 1 (Generalized Eluder Coefficient (GEC)). Given a MDP and a hypothesis class H, the
eluder coefficient d(ϵ) is the smallest d (d ≥ 0) such that for any sequence of hypotheses {f t ∈
H}Tt=1, it holds that

T∑
t=1

V1,ft(x1)− V
πft

1 (x1)︸ ︷︷ ︸
prediction error

=

T∑
t=1

H∑
h=1

Eπft Eh(f
t, xh, ah)

≤
[

d(ϵ)︸︷︷︸
Cost of generalization

H∑
h=1

T∑
t=1

t−1∑
s=1

(
Eπfs Eh(f

t, xh, ah)
)2

︸ ︷︷ ︸
training error

]1/2

+ 2min{Hd,H2T}+ ϵB†T︸ ︷︷ ︸
burn-in cost

,

where B† > 0 is some problem-dependent constant for regularization. In general, we may use a
different notion of training error, and define the generalized eluder coefficient as follows:

T∑
t=1

V1,ft − V
πft

1 ≲

[
d(ϵ)︸︷︷︸

cost of generalization

H∑
h=1

T∑
t=1

t−1∑
s=1

ℓsh(f
t)︸ ︷︷ ︸

training error

]1/2
,

where ℓsh(·) : H → R+ and ℓsh(f
∗) = 0 holds for any (s, h) ∈ [T ]× [H]. We omit the burn-in cost

for a clearer presentation.

Ignoring the burn-in cost, which is typically non-dominating, the eluder coefficient suggests that
the prediction error can be upper bounded by the cumulative training error on average, although the
training error is amplified by the eluder coefficient. Therefore, the eluder coefficient can be used
to measure the hardness of such a generalization, thus further serving to measure the hardness of
learning the MDP. We make several remarks before continuing.
Remark 2. The first definition presented here is from Dann et al. (2021) (up to a Cauchy-Schwarz
inequality), except that the expectation is inside the square in the training error. This is a very
subtle difference and Xie et al. (2022) thoroughly studies it from a statistical viewpoint. We choose
this formulation because this can be handled with only realizability. Otherwise, one need Bellman
completeness condition to achieve sample-efficient learning.
Remark 3. There is an expectation in the notion of loss, instead of evaluating the loss at a specific
point as in the Lemma 1. Therefore, the implicit structure assumption is now imposed on the in-
terplay between the MDP and the hypothesis class, which allows this formulation to capture more
problems.
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4.1 EXAMPLE: LINEAR MDP

We now illustrate the idea in terms of the linear MDP Jin et al. (2020).
Example 3 (Linear MDP). MDP(S,A, H,P, r) is a linear MDP with a (known) feature map ϕ :

S × A → Rd, if for any h ∈ [H], there exist d unknown signed measures µh = (µ
(1)
h , · · · , µ(d)

h )

over S and an unknown vector θh ∈ Rd, such that for any (x, a) ∈ S × A, we have Ph(· | x, a) =
⟨ϕ(x, a), µh(·)⟩ , rh(x, a) = ⟨ϕ(x, a), θh⟩. Without loss of generality, we assume that ||ϕ(x, a)|| ≤ 1

for all (x, a) ∈ S ×A, and max{||µh(S)||, ||θh||} ≤
√
d for all h ∈ [H].

For linear MDP, both the transition kernel and the reward function are linear in a known feature,
which further implies that the Bellman residual of any f ∈ H is linear, thus reducing to the case of
Theorem 1.
Lemma 3 (Linear MDP has a low eluder coefficient). For the linear MDP defined in Example 3,
if we take Hh = {Qh,f (·, ·) = ϕ(·, ·)⊤θh,f : ∥θh,f∥ ≤

√
dH}, then it has an eluder coefficient of

d(ϵ) = O
(
Hd log(1 + T

ϵ )
)
.

Proof. The first step is to show that the EEh (f t, xth, ath) is linear, which can be further controlled
by the techniques presented in Lemma 1. For any V : S → [0, H − 1], we have

ThV (x, a) = rh(x, a) + (PhV )(x, a) = ϕ(x, a)⊤θh +

∫
S
V (xh+1) ⟨ϕ(x, a), dµh(xh+1)⟩

=
〈
ϕ(x, a), θh +

∫
S
V (xh+1)dµh(xh+1)

〉
:= ⟨ϕ(x, a), wh⟩ .

(10)

Therefore, the Bellman update of any V is linear in the feature ϕ(·, ·) and ||wh|| ≤
√
d ·H by the

regularization condition. The proof of PhV follows from setting rh = 0. We are ready to prove the
following lemma.

Lemma 4. For linear MDP with hypothesis class Hh = {Qh,f (·, ·) = ϕ(·, ·)⊤θh,f : ∥θh,f∥ ≤√
dH}, for any f ∈ H and h ∈ [H], there exists a Xh(f) ∈ Rd such that Eπf

Eh(f, xh, ah) =

⟨Xh(f), θh,f − wh,f ⟩, where Qh,f (x, a) = ϕ(x, a)⊤θh,f and ThVh+1,f (x, a) = ϕ(x, a)⊤wh,f .
Moreover, by definition of linear MDP, it holds

sup
h,f∈[H]×H

max{||θh,f ||, ||wh,f ||} ≤
√
dH, and sup

h,f∈[H]×H
||Xh(f)|| ≤ 1.

Proof. By equation 10, we know that for any Vh+1,f associated with f ∈ H, we can assume that
there exists a wh,f ∈ Rd such that ThVh+1,f (·, ·) = ϕ(·, ·)⊤wh,f . Meanwhile, for any Qh,f , it can
be represented by Qh,f (·, ·) = ϕ(·, ·)⊤θh,f for some θh,f ∈ Rd. As a result, for any f ∈ H, the
Bellman residual is also linear:

Eh(f, xh, ah) = Qh,f (xh, ah)− ThVh+1,f (xh, ah) = ⟨ϕ(xh, ah), θh,f − wh,f ⟩ .
Therefore, we know that Xh(f) = Eπf

ϕ(xh, ah) satisfies the condition.

We now invoke the above result to establish the eluder coefficient of linear MDP. Before continuing,
we introduce the notation Σt;h = λI +

∑t−1
s=1Xh(f

s)Xh(f
s)⊤, which is an estimation of the

covariance matrix. It follows that
T∑

t=1

V1,ft(x1)− V πt

1 (x1) =

T∑
t=1

H∑
h=1

Eπft

[
Eh

(
f t, xt

h, a
t
h

)] (
1{∥Xh(f

t)∥
Σ−1

t;h
≤ 1}+ 1{∥Xh(f

t)∥
Σ−1

t;h
> 1}

)
≤ H ·

T∑
t=1

H∑
h=1

min

{
|
〈
Xh(f

t),
θh,ft − wh,ft

H

〉
|, 1

}
1{∥Xh(f

t)∥
Σ−1

t;h
≤ 1}

+H ·
T∑

t=1

H∑
h=1

1{∥Xh(f
t)∥

Σ−1
t;h

> 1}

≤ H ·
T∑

t=1

H∑
h=1

min

{
|⟨Xh(f

t),
θh,ft − wh,ft

H
⟩|, 1

}
1{∥Xh(f

t)∥
Σ−1

t;h
≤ 1}+min{Hd̃,H2T},

(11)

8
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where d̃ = 3Hd
log 2 log

(
1 + T

λ log 2

)
. Here the last inequality uses the fact that ||Xh(f

t)||Σ−1
t;h

cannot
exceed 1 too much times as detailed in Lemma 1. We now fix a (t, h) in the first summation and
proceed as follows:

min

{
|
〈
Xh(f

t),
θh,ft − wh,ft

H

〉
|, 1

}
1{∥Xh(f

t)∥
Σ−1

t;h
≤ 1}

≤ ||
θh,ft − wh,ft

H
||Σt;h ·min{||Xh(f

t)||
Σ−1

t;h
, 1}

=
1

H

[
λ||θh,ft − wh,ft ||2 +

t−1∑
s=1

|
〈
Xh(f

s), θh,ft − wh,ft

〉
|2
]1/2

·min{||Xh(f
t)||

Σ−1
t;h

, 1}

≤
[
λd+

1

H2

t−1∑
s=1

(
Eπfs Eh(f

t, xh, ah)
)2]1/2 ·min{||Xh(f

t)||
Σ−1

t;h
, 1}

(12)

where the equality uses Σt;h = λI+
∑t−1

s=1Xh(f
s)Xh(f

s)⊤, and the last inequality uses ||θh,ft −
wh,ft || ≤

√
dH and

⟨Xh(f
s), θh,ft − wh,ft⟩ = Eπfsϕ(xh, ah)

⊤(θh,ft − wh,ft)

= Eπfs

(
Qh,ft(xh, ah)− ThVh+1,ft(xh, ah)

)
.

Plugging equation 12 into equation 11, we obtain that
T∑

t=1

V1,ft(x1)− V πt

1 (x1)

≤ H ·
T∑

t=1

H∑
h=1

[
λd+

1

H2

t−1∑
s=1

(
Eπfs Eh(f

t, xh, ah)
)2]1/2 ·min{||Xh(f

t)||
Σ−1

t;h
, 1}+min{Hd̃,H2T}

≤
( T∑

t=1

H∑
h=1

√
λdH +

T∑
t=1

H∑
h=1

[ t−1∑
s=1

(
Eπfs Eh(f

t, xh, ah)
)2]1/2) ·min{||Xh(f

t)||
Σ−1

t;h
, 1}+min{Hd̃,H2T}

≤
[ T∑
t=1

H∑
h=1

t−1∑
s=1

(
Eπfs Eh(f

t, xh, ah)
)2]1/2[ T∑

t=1

H∑
h=1

min{||Xh(f
t)||2

Σ−1
t;h

, 1}
]1/2

+
[ T∑
t=1

H∑
h=1

λdH2
]1/2[ T∑

t=1

H∑
h=1

min{||Xh(f
t)||2

Σ−1
t;h

, 1}
]1/2

+min{Hd̃,H2T}

≤
[
d̃

T∑
t=1

H∑
h=1

t−1∑
s=1

(
Eπfs Eh(f

t, xh, ah)
)2]1/2

+ 2min{Hd̃,H2T}+H2dTλ.

We conclude that linear MDP has an eluder coefficient of O
(
Hd log

(
1 + T

λ

))
.

As a motivating example, we first introduce the following linear mixture MDP Ayoub et al. (2020);
Cai et al. (2020); Modi et al. (2020).
Example 4. We say an MDP is a liner mixture model if there exists (known) feature ϕ : S ×
A × S → Rd and ψ : S × A → Rd; and (unknown) θ∗ ∈ Rd, such that for all h ∈ [H] and
(x, a, x′) ∈ S ×A× S , we have

Ph(x
′ | x, a) = ⟨θ∗h, ϕ(x, a, x′)⟩, rh(x, a) = ⟨θ∗h, ψ(x, a)⟩. (13)

For regularization, we assume that ||θ∗h|| ≤ B for some constant B > 0.

Unfortunately, one cannot obtain a low eluder coefficient for linear mixture MDP by taking the loss
function as (EπfsEh(f t, xh, ah))2. However, it achieves a low eluder coefficient by considering a
different loss function.
Lemma 5 (Linear mixture MDP has a low generalized eluder coefficient). We consider the hypoth-
esis space H = {f = (θ1,f , · · · , θH,f ) : ∀h ∈ [H], ||θh,f || ≤ B} and adopt the following loss
function for linear mixture MDP:

ℓsh(f) = Eπfs

[
rh,f (xh, ah)− rh,f∗(xh, ah)

+ Exh+1∼Ph,f (·|xh,ah)Vh+1,fs(xh+1)− Exh+1∼Ph,f∗ (·|xh,ah)Vh+1,fs(xh+1)
]
.

9
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Then, for linear mixture MDP, its GEC satisfies d(ϵ) = Õ(Hd).

There is also a line of work assuming different bilinear structures on the induced Bellman residual
space, including Bellman rank (Jiang et al., 2017b), witness rank (Sun et al., 2019), and bilinear
rank (Du et al., 2021), whose GEC can be bound similarly.

4.2 EXAMPLE: ELUDER DIMENSION

The analysis presented in the last subsection heavily relies on the linear structure of the problem.
In the literature, there is another general complexity measure, i.e., the eluder dimension Russo &
Van Roy (2013); Wang et al. (2020); Jin et al. (2021a), that can cover a wide range of RL problems.
We first introduce the definition of ϵ-independence.
Definition 2 (ϵ-independence between distributions). Let G be a function class defined on Z , and
ν, µ1, · · · , µn be probability measures over Z . We say ν is ϵ-independent of {µ1, µ2, · · · , µn} with
respect to G if there exists g ∈ G such that

√∑n
i=1(Eµi

[g])2 ≤ ϵ but |Eν [g]| > ϵ.

Intuitively, independence means that we can find a g ∈ G such that even though it is consistent with
the historical data (small in-sample error on {µ1, µ2, · · · , µn}), we can still suffer from a large error
on the new distribution ν.
Definition 3 (Distributional eluder (DE) dimension). Let G be a function class defined on Z , and
Π be a family of probability measures over Z . The distributional eluder dimension dimDE(G,Π, ϵ)
is the length of the longest sequence {ρ1, · · · , ρn} ⊂ Π such that there exists ϵ′ ≥ ϵ with ρi being
ϵ′-independent of {ρ1, · · · , ρi−1} for all i ∈ [n].

The distributional eluder dimension is simply the length of the longest sequence such that these
independent things can happen consecutively in sequence. To be more specific, in what follows, we
consider Gh = {Eh(f, ·, ·) : f ∈ H} as the induced Bellman residual class (in this case, it is referred
to as the Bellman elduer dimension (Jin et al., 2021a)), but we note that the reduction technique can
be applied to general function class. The following lemma (Dann et al., 2021) shows that a problem
with a low distributional eluder dimension also has a low eluder coefficient.
Lemma 6. Suppose that a problem has a distributional eluder dimension of dimDE(G,Π, ϵ) and
suppose that |g| is bounded by H for all g ∈ G. Then, the eluder coefficient satisfies d(ϵ) ≤
O(dimDE(G,Π, ϵ) log T ) in the following sense: for arbitrary sequence of {(dt, gt) ∈ Π × G}Tt=1,
we have

T∑
t=1

|Edt
gt| ≤

√√√√d(ϵ)

T∑
t=1

t−1∑
s=1

(
Edsgt

)2
+min{d(ϵ), HT}+ ϵT.

Remark 4. We note that Russo & Van Roy (2013) developed a technique that could also achieve the
goal of reducing the out-of-sample error into the historical one (see proposition 3 and lemma 2 of
Russo & Van Roy (2013) for details). However, the result and subsequent adaptations (e.g. Jin et al.
(2021a)) require a non-decreasing sequence {βt}Tt=1 such that

∑t−1
s=1(Eds

gt)
2 ≤ βt for all t ∈ [T ].

This is suitable for the algorithms based on confidence set, but cannot be applied to the posterior
sampling and also the algorithms we will present in Algorithm 5.

In contrast, we note that the problems with a low eluder coefficient can have a large eluder dimen-
sion, as shown by the following lemma adapted from Xie et al. (2022).
Lemma 7. Fix the time horizon T > 0 and H = 2. Let Π = Π1 × · · ·ΠH and Πh be a collection
of probability measure families over S × A induced by following πf . Then, there exists a class
of MDPs such that the distributional eluder dimension maxh∈[2] dimDE(Gh,Πh, 1/T

1/3) is lower
bounded by Ω(T 1/3), while the eluder coefficient d(ϵ) is upper bounded by O(log T ), regardless of
the ϵ, in the sense of: for an arbitrary sequence of {f t ∈ H}Tt=1, we have

T∑
t=1

V1,ft − V
πft

1 ≲

√√√√d(ϵ)

T∑
t=1

2∑
h=1

t−1∑
s=1

EπfsEh(f t, xh, ah)2 +min{d(ϵ), T}+ ϵT.

To summarize, the bilinear-type low rank structure assumption and the eluder dimension assumption
can be unified in the presented framework.
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5 ALGORITHMIC DESIGN

5.1 LOSS ESTIMATOR: SUPERVISED GUARANTEE

One issue is that ℓsh(·) may not be directly available from the dataset because it involves an expecta-
tion. We introduce the following loss estimator based on the collected samples.
Definition 4 (Loss estimator with batch sampling). We consider a general sampling strategy where
we sample m i.i.d. trajectories {ζki,h}mi=1

1 at each stage k and assume that T is divisible by m
without loss of generality. With K := T/m, for each iteration k ∈ [K], we suppose that we have
access to a loss estimator L1:k−1

h (·) : H → R, which only depends on the history:

{f1, (ζ1i,h)mi=1, f
2, (ζ2i,h)

m
i=1, · · · , fk−1, (ζk−1

i,h )mi=1}.

Moreover, it satisfies the following estimation error bound: with probability at least 1 − δ, it holds
that for all (k, h, f) ∈ [K]× [H]×H

k−1∑
s=1

ℓsh(f) ≤ L1:k−1
h (f) + ∆k

h, (14)

and
L1:k−1
h (f∗) ≤ ∆k

h. (15)

For instance, when ℓsh(·) is bounded by C2, one can always take L1:k−1
h (f) = 0 and ∆k

h = C2k.
On the other hand, we can do much better than this naive estimator, whose proofs are standard
applications of concentration inequalities. We remark that the loss estimators introduced in this
section are independently studied in the literature widely. The main purpose here is to provide a new
interpretation of these algorithmic designs which better fit our framework.

We first focus on the value-based case, where the loss function is ℓsh(f) =
(
EπfsEh(f, xh, ah)

)2
.

As a motivating example, if we want to estimate
∑k−1

s=1 (EXs)
2 with a collection of samples

X1, · · · , Xk−1 from the underlying distribution sequence, we cannot directly use the loss estimator∑k−1
s=1 X

2
s because

E
k−1∑
s=1

X2
s =

k−1∑
s=1

(EXs)
2

︸ ︷︷ ︸
Goal

+

k−1∑
s=1

σ2
s︸ ︷︷ ︸

Sampling variance

.

The error term of sampling variance grows linearly in the time steps and makes it unaffordable. To
address this issue, one straightforward idea is to replace Xs with a sample mean to achieve a low
variance.
Lemma 8 (In-sample error estimation with trajectory average Jiang et al. (2017b); Du et al. (2021)).
Suppose that ℓsh(f) =

(
Exh∼πfs ,ah∼πfsEh(f, xh, ah)

)2
. We can independently sample m trajecto-

ries {ζki,h}mi=1 by following πfk for each k ∈ [K] and take

L1:k−1
h (f) =

k−1∑
s=1

Ls
h(f) := 2

k−1∑
s=1

[ 1

m

m∑
i=1

(
Qh,f (x

s
i,h, a

s
i,h)− rsi,h − Vh+1,f (x

s
i,h+1)

)]2
,

where it satisfies equation 14 and equation 15 with ∆k
h = 4(k−1)H2ι

m , and ι = O(log(KH|H|/δ)).

Proof. We denote ϵsh(f) = 1
m

∑m
i=1(Qh,f (x

s
i,h, a

s
i,h) − rsi,h − Vh+1,f (x

s
i,h+1)) for notation sim-

plicity. For each fixed (s, h, f) ∈ [K]× [H]×H, the Azuma-Hoeffding inequality implies that with
probability at least 1− δ/(KH|H|), we have∣∣∣ϵsh(f)− EπfsEh(f, xh, ah)

∣∣∣ ≤ H

√
2 log(KH|H|/δ)

m
.

1When m = 1, we omit the subscript i for simplicity, which should be clear from the context.
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By (a+ b)2 ≤ 2a2 + 2b2, we further have(
EπfsEh(f, xh, ah)

)2 ≤ 2
(
ϵsh(f)

)2
+

4H2 log(KH|H|/δ)
m

.

Taking a union bound, with probability at least 1− δ, the inequality holds for all (s, h, f) ∈ [K]×
[H]×H. Therefore, it satisfies that

k−1∑
s=1

ℓsh(f) ≤ L1:k−1
h (f) +

4(k − 1)H2 log(KH|H|/δ)
m

.

To prove equation 15, we note Eh(f∗, xh, ah) = 0 for any (xh, ah).

The guarantee provided by Lemma 8 can be sub-optimal since we usem samples for one hypothesis
choice f t. We should view the Lemma 8 as

m ·
k−1∑
s=1

ℓsh(f) ≤ m · L1:k−1
h (f) + 4(k − 1)H2 · log(KH|H|/δ).

For a value-based approach, we can obtain a sharper estimator with the following Bellman com-
pleteness condition.
Assumption 2 (Bellman Completeness). We consider a value-based hypothesis Hh = Fh ⊂ {fh :
S ×A → R}. The hypothesis class is said to be Bellman complete, if for each h ∈ [H], T ∗

h Fh+1 ⊂
Fh, where T ∗

h Fh+1 = {Thfh+1 : fh+1 ∈ Fh+1} and

(T ∗
h fh+1)(x, a) := rh(x, a) + Ex′∼Ph(·|x,a) max

a′
fh+1(x

′, a′).

Bellman completeness is stronger than the realizability since by taking fH+1 = 0, we can show that
f∗ ∈ F by Bellman completeness. However, completeness itself is not desirable because adding a
new function into the function class can destroy such a property.
Lemma 9 (In-sample error estimation with minimax formulation Antos et al. (2008);
Jinglin & Jiang (2019); Jin et al. (2021a); Dann et al. (2021)). Suppose that ℓsh(f) =(
Exh∼πfs ,ah∼πfsEh(f, xh, ah)

)2
. We set m = 1 so T = K in this case. For each t ∈ [T ], we

can collect the trajectory ζt by following πft and take L1:t
h (f) :=

∑t
s=1 L

s
h(f) where

Ls
h(f) =

(
Qh,f (x

s
h, a

s
h)− rsh − Vh+1,f (x

s
h+1)

)2 − inf
f ′
h∈Hh

(
Qh,f ′(xsh, a

s
h)− rsh − Vh+1,f (x

s
h+1)

)2
,

where it satisfies equation 14 and equation 15 with ∆t
h = O(H2ι) and ι = log(H|H|T/δ).

The main intuition of the minimax formulation is that it allows us to consider the following loss
function in the theoretical analysis:

L̃s
h(f) =

(
Qh,f (x

s
h, a

s
h)− rsh − Vh+1,f (x

s
h+1)

)2 − (
ThVh+1,f (x

s
h, a

s
h)− rsh − Vh+1,f (x

s
h+1)

)2
,

where the conditional expectation of the second term is exactly the sampling variance, thus can-
celing the variance term. The reason is that we can approximate the second term (which is not
available to the actually executed algorithm) by inff ′

h∈Hh

(
Qh,f ′(xsh, a

s
h) − rsh − Vh+1,f (x

s
h+1)

)2
and the Bellman completeness condition. The loss estimator in Lemma 9 is referred to as minimax
formulation Antos et al. (2008) because it can be also written as

min
f∈H

max
f ′∈H

H∑
h=1

[(
Qh,f (x

s
h, a

s
h)− rsh − Vh+1,f (x

s
h+1)

)2 − (
Qh,f ′(xs

h, a
s
h)− rsh − Vh+1,f (x

s
h+1)

)2]
.

Remark 5. Both Lemma 8 and Lemma 9 can ensure a small average loss∑t−1
s=1

(
EπfsEh(f, xh, ah)

)2
. However, the minimax formulation further ensures a small∑t−1

s=1 Eπfs

(
Eh(f, xh, ah)

)2
, while the trajectory average cannot. We mention in passing that

Chen et al. (2022b) further study such a formulation with the general loss function beyond Bellman
residual.
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In addition to the model-free approach, we also handle the model-based case in the following lemma.

Lemma 10 (In-sample error estimation of model-based method). Suppose that ℓsh(f) =
EπfsD2

H

(
Ph,f (· | xh, ah),Ph,f∗(· | xh, ah)

)
. We set m = 1 so T = K in this case. For each

h ∈ [H], we can take L1:t
h (f) :=

∑t
s=1 L

s
h(f) := 1

2

∑t
s=1 − logPh,f (x

s
h+1 | xsh, ash). However,

implementation with Ls
h(·) does not lead to a condition as required in Definition 4 for Ls

h(·) it-
self. The key observation is that adopting Ls

h(·) is equivalent to implementing Algorithm 1 with
L̃s
h(f) = − 1

2 logPh,f (x
s
h+1 | xsh, ash) + 1

2 logPh,f∗(xsh+1 | xsh, ash) because we subtract the same
amount of loss for all hypotheses. Therefore, we can use it in our theoretical analysis, and it satisfies
equation 14 and equation 15 with ∆t

h = log(H|H|/δ).

The idea of using an equivalent L̃s
h(·) can be viewed as introducing a baseline in the loss estimator.

As long as the baseline is fixed for all f ∈ H, it leads to an equivalent algorithm.

Based on the plug-in principle, one can adopt the following choice of hypothesis for each iteration
k:

fk := argmin
f∈H

L1:k−1
h (f). (16)

The model-free version is referred to as the fitted Q-iteration (FQI) in the literature Szepesvári
(2010). We may call equation 16 as fitted ℓ-iteration (FLI) since the target here is the loss function
ℓ in the definition of GEC. FLI picks the hypothesis that best approximates the ground truth. Un-
fortunately, this does not ensure a low regret bound or a mild sample complexity. This is because a
low cumulative prediction error does not necessarily lead to a low regret because of the difference
between V1,f and V ∗

1 .

5.2 OPTIMISTIC FLI

The idea is to modify the FLI by adding another “feel-good” term to the objective:

f t = argmax
f∈H

[
V1,f (x1)− η

t−1∑
s=1

H∑
h=1

Ls
h(f)

]
, (17)

where η > 0 is a hyper-parameter to control the relative importance of the feel-good term. The
technical consideration of this modification is inspired by Zhang (2022). The complete algorithm is
presented in Algorithm 1.

Algorithm 1 Optimistic FLI
1: Input: Hypothesis space H , η > 0, batch size m > 0.
2: for k = 1, 2, · · · ,K := T/m do
3: Select fk by solving

fk = argmax
f∈H

[
V1,f (x1)− η

H∑
h=1

L1:k−1
h (f)

]
. (18)

4: For each h ∈ [H], collect a batch of dataset {ζki,h}mi=1 by following πfk m times.
5: end for

Comparison to existing OFU-based algorithms. The algorithm can be viewed as a unification of
the BiLin-UCB Du et al. (2021), GOLF Jin et al. (2021a), and OMLE Liu et al. (2022), where the
generality is mainly from the flexible choice of the loss function. However, the main difference is
that we do not explicitly maintain a confidence set and perform a constraint optimization subroutine
on it:

max
f∈F

V1,f

subject to
H∑

h=1

L1:k−1
h (f) ≤ βk,

(19)
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where βk > 0 is the confidence level. To the best of our knowledge, such an implicit formulation is
new in the literature of online RL and we believe that it helps to better illustrate the role of optimism
in the algorithmic design. We mention in passing that Xie et al. (2021) has a similar algorithmic idea
in the pessimism-based offline setting. Combining this with the in-sample error estimation bound,
we can establish the main result of this paper.

Theorem 2. Under Assumption 1, we consider the problem with a low GEC d(ϵ) and
the loss estimator given in Definition 4 with estimation interval ∆k

h. Then, with η =√
d(ϵ)/(2

∑H
h=1

∑K
k=1 ∆

k
h) > 0, Algorithm 1 satisfies that with probability at least 1− δ,

Reg(T ) ≤ 2
√
2m

√√√√d(ϵ)

H∑
h=1

K∑
k=1

∆k
h + 2m ·min{Hd,H2K}+ ϵB†T,

where T = mK.

Proof. We recall that the batch size is m, and the total iteration is K := T/m. We denote
∆V1,f (x1) = V1,f (x1)− V ∗

1 (x1). It follows that

K∑
k=1

V ∗
1 − V πk

1 :=

K∑
k=1

[V1,fk − V πk

1 + V ∗
1 − V1,fk ]

≤
K∑

k=1

[V ∗
1 − V1,fk ] + η

H∑
h=1

K∑
k=1

( k−1∑
s=1

ℓsh(f
k)
)
+

1

η
· d+ 2min{Hd,H2K}+ ϵB†K︸ ︷︷ ︸

Ξ

//GEC

≤
K∑

k=1

V ∗
1 +

K∑
k=1

[
− V1,fk + η

H∑
h=1

L1:k−1
h (fk)

]
+ η

H∑
h=1

K∑
k=1

∆k
h + Ξ //Loss estimator.

≤
K∑

k=1

V ∗
1 +

K∑
k=1

[
− V ∗

1 + η

H∑
h=1

L1:k−1
h (f∗)

]
+ η

H∑
h=1

K∑
k=1

∆k
h + Ξ //Update rule.

≤ 2η

H∑
h=1

K∑
k=1

∆k
h +

1

η
· d+ 2min{Hd,H2K}+ ϵB†K.

Now we optimize the last equation with respect to η > 0 and take η =
√
d/(2

∑H
h=1

∑K
k=1 ∆

k
h) >

0:
K∑

k=1

V ∗
1 (x1)− V πk

1 (x1) ≤ 2η

H∑
h=1

K∑
k=1

∆k
h +

1

η
· d+ 2min{Hd,H2K}+ ϵB†K

= 2

√√√√2d

H∑
h=1

K∑
k=1

∆k
h + 2min{Hd,H2K}+ ϵB†K.

Since for each iteration, we sample m trajectories in total, the final regret is given by:

Reg(T ) ≤ 2
√
2m

√√√√d

H∑
h=1

K∑
k=1

∆k
h + 2m ·min{Hd,H2K}+ ϵB†T.

5.3 POSTERIOR SAMPLING

While the optimization-based framework Algorithm 1 provides a satisfactory statistical guarantee, it
is known that posterior sampling usually outperforms this type of algorithms empirically, including
Chapelle & Li (2011) for bandits, and Osband et al. (2016) for RL. We can extend the idea to
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the posterior sampling, which is presented in Algorithm 2. For instance, the Conditional Posterior
Sampling presented in Dann et al. (2021) adopt the following posterior:

L1:t
h (f) = −η

t∑
s=1

[Qh,f (x
s
h, a

s
h)− rsh − Vh+1,f (x

s
h+1)]

2

− logEf̃h∼p0
h(·)

[
exp

(
−η

t∑
s=1

[Qh,f̃ (x
s
h, a

s
h)− rsh − Vh+1,f (x

s
h+1)]

2

)]
,

(20)

where η > 0 is a hyper-parameter and the highlighted term can be viewed as the soft version in
the minimax formulation and is used to cancel the sampling variance. Another model-based version
(Zhong et al., 2022) takes

L1:t
h (f) := η

t∑
s=1

logPh,f (x
s
h+1 | xsh, ash). (21)

The analyses of the posterior sampling are developed in Zhang (2022); Dann et al. (2021); Zhong
et al. (2022) and lead to matching upper bounds as compared to Algorithm 1, and we refer the
interested readers to these works for details.

In comparison, the sampling-based framework requires knowledge of the environment by assum-
ing that we have access to a good prior distribution that approximately satisfies the Assumption 1
and the Assumption 2. In contrast, the optimization-based framework presented in this paper does
not require knowledge of the environment. However, as we mentioned before, while two types of
algorithms achieve similar theoretical guarantees, empirical studies show that sampling-based al-
gorithms are usually superior in practice. We have some preliminary experimental results for the
optimization-based framework in Liu et al. (2023) and leave the posterior sampling for future work.

Algorithm 2 Optimistic Posterior Sampling
1: Input: Hypothesis space H , γ > 0, batch size m > 0, and a prior distribution p0.
2: for k = 1, 2, · · · ,K := T/m do
3: Sample fk from

pk(f) ∝ p0(f) exp(γV1,f )︸ ︷︷ ︸
Feel-good prior

· exp(L1:k−1
h (f)). (22)

4: For each h ∈ [H], collect a batch of dataset {ζki,h}mi=1 by following πfk m times.
5: end for

6 RELATED WORK

The central problem in theoretical RL is to identify the structural assumption that permits sample-
efficient learning. We now present a comprehensive review of the attempts and also the results we
have collected so far in the literature.

Tabular MDP. For a tabular MDP, we assume that the state space S and action space A are small.
But we do not impose any structural assumption across states and actions. The goal in the tabular
case is to design algorithms that achieve a regret depending polynomially on S,A and also the
horizon H . The tabular MDP has been extensively studied in the literature Auer et al. (2008); Azar
et al. (2017); Dann et al. (2017); Jin et al. (2018); Agrawal & Jia (2017); Zanette & Brunskill (2019);
Zhang et al. (2020; 2021); Ménard et al. (2021); Li et al. (2021); Wu et al. (2022); Zhang et al. (2022).
Among them, Azar et al. (2017) designs a model-based algorithm UCB-VI that explicitly models
the transition matrix of the MDP, and attains the minimax-optimal regret bound O(

√
H2SAT ).

After this, Jin et al. (2018) proposes an optimistic variant of Q-learning UCB-B, which is model-
free because it directly learns the optimal Q-value instead of the model dynamic, and attains a
regret of O(

√
H3SAT ) with Bernstein-type bonus. This is later improved by Zhang et al. (2020)

to close the gap to the lower bound by leveraging the idea of variance reduction by a reference
function Johnson & Zhang (2013). In comparison, the model-free algorithms typically require less
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time space and storage space as compared to the model-based counterparts. Since both the model-
based and model-free algorithms attain the minimax-optimal regret bound, the tabular settings are
well-studied. However, since the lower bound depends on the

√
SA, we cannot handle modern RL

problems with large state space without further structural assumptions.

To handle the large or even infinite state/action space, we need to impose additional structural as-
sumptions across different states and actions. Motivated by the empirical success of DRL, we will
approximate either the model dynamics (the transition kernel and the reward function, referred to as
the model-based approach) or the value functions (e.g. Q∗, V ∗, Qπ , referred to as the model-free
approach) by an abstract hypothesis space H. The primary goal is to design algorithms that general-
ize across the large state-action space well and attain a sub-linear regret bound in T and also with a
mild dependence on H and other problem-dependent parameters (e.g. d, dimension of the feature).
In particular, instead of depending on the number of states S, we expect that the regret bounds scales
with the statistical complexity of the function class (e.g. log |H| for finite class or the log covering
number logN for infinite class).

Linear function approximation and learnability. Linear function approximation is arguably the
most fundamental one Wang et al. (2019); Yang & Wang (2019); Cai et al. (2020); Jin et al. (2020);
Zanette et al. (2020); Ayoub et al. (2020); Modi et al. (2020); Zhou et al. (2021); Zhong & Zhang
(2023); Agarwal et al. (2022); He et al. (2022) in function approximation. Typically, we will assume
that we have access to a d-dimensional feature map of the state-action pair ϕ : S × A → Rd. A
natural idea is to assume that the optimal Q-value Q∗ is linear in this feature, where we refer it as
the linear Q∗ condition, in the sense that there exists a θh ∈ Rd and ||θ∗h|| ≤ B:

Q∗
h(x, a) := ⟨ϕ(x, a), θ∗h⟩ , ∀h ∈ [H]. (23)

The main technical consideration is that due to the extra linear structure, we can generalize from
the visited states to the unseen states by the standard analysis of linear regression (in comparison,
the tabular MDP does not impose any structure across states and actions so such a generalization
is impossible). Then, we can approximate the Q∗ by H := {Qh(x, a) = ⟨ϕ(x, a), θh⟩ : ||θh|| ≤
B, h ∈ [H]}, which satisfies the realizability assumption (Assumption 1). Unfortunately, there
exists a negative result Wang et al. (2021), saying that this is not sufficient for sample-efficient
learning.
Proposition 2 (Linear-realizability is not sufficient Wang et al. (2021)). There exists an MDP with
feature map ϕ that satisfies equation 23 but any algorithms must have

EReg(T ) ≳ min{2Ω(d), 2Ω(H)}.

To bypass this hardness result, Jin et al. (2020) imposes a stronger assumption that both the transition
kernel and the reward function are linear in the feature, where we refer to this condition as the
linear MDP (Example 3). Jin et al. (2020) designs an optimistic variant of LSVI (Least Squares
Value Iteration), referred to as the LSVI-UCB, that achieves a regret of Õ(

√
d3H4T ). This result

is recently improved by Agarwal et al. (2022); He et al. (2022) to Õ(
√
d2H3T ), which matches

the minimax lower bound in Zhou et al. (2021). Another line of work Ayoub et al. (2020); Modi
et al. (2020); Cai et al. (2020); Zhou et al. (2021) study the linear mixture MDP, where the transition
kernel is a linear mixture of a number of basis kernels and also has designed algorithms based on
linear regression to achieve the minimax-optimal regret bound. As we have seen in the main text, the
linear MDP and the linear mixture MDP essentially limit the generalization from the historical data
samples to the newly arrived trajectory by limiting the freedom of the transition kernels and reward
functions. Such a generalization ability is Õ(d) in the complexity measure proposed in this paper.
We note that both the linear MDP and linear mixture MDP are rather strong assumptions. There are
also some works that consider linear realizability different from equation 23. For instance, Du et al.
(2019) assumes that the Q-value of any policy is linear:

Qπ
h(x, a) = ⟨ϕ(x, a), θπh⟩ , ∀h ∈ [H].

It is shown that if we can query a simulator with (xh, ah) to get x′ ∼ Ph(x
′|xh, ah) and rh(xh, ah),

the problem is sample-efficient. On the other hand, in the standard online setting where we always
play the episode starting from x1, the learnability of Qπ

h-realizability remains open.

Sample-efficient RL with general function approximation. While the linear MDP assumption
permits sample-efficient learning, it is rather limited in practice. A long line of work extends to
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the general non-linear function approximation and designs algorithms to effectively solve these RL
problems. Generally speaking, these works can be largely grouped into two categories (i) impose
certain low-rank structures so that some results in the linear MDP can be generalized; (ii) limit the
sequence length of effective state (and/or action) distributions with respect to the hypothesis space.
We now review them as follows.

A line of work imposes a low-rank structure on certain parts of the RL problems. The seminal work
Jiang et al. (2017b) considers the model-free approach with value-based hypothesis F and proposes
the Bellman rank, which is imposed on the class of induced Bellman residual: {Eπf

Eh(g, xh, ah) :
f, g ∈ F}2. If we view this set as a matrix of R|Π|×|F| with Π := {πf : f ∈ F}, the Bellman rank d
is the rank of the matrix, maximized over h ∈ [H]. In this case, the linearly independent rows of the
matrix one can find are at most d, thus limiting the generalization of the problems. More generally,
one can extend the finite-dimensional case by considering a bilinear structure. Specifically, we
assume that we have two unknown embeddingsWh : F → V andXh : F → V where V is a Hilbert
space such that

Eπf
Eh(g, xh, ah) = ⟨Wh(g)−Wh(f

∗), Xh(f)⟩ , (24)

where the Bellman rank can be described in terms of the information gain Srinivas et al. (2009).
Jiang et al. (2017b) also proposes OLIVE, based on the OFU principle and hypothesis elimination,
to solve the problems with a low Bellman rank. After Bellman rank and OLIVE, Sun et al. (2019)
shows that there exists an exponential separation between the model-free approach and model-based
approach, in the sense that the Bellman rank of factored MDPs Kearns & Koller (1999) can be expo-
nentially large. Alternatively, Sun et al. (2019) extends the idea of Bellman rank to the model-based
setting, and proposes the witness rank, to capture the factored MDPs. Du et al. (2021) generalizes
them by proposing the bilinear class, which assumes that the average Bellman error and a discrep-
ancy loss have a special bilinear structure. Moreover, the bilinear class allows a flexible choice of
“discrepancy function” to capture both the model-free and model-based problems. Du et al. (2021)
also proposes BiLin-UCB, which is more similar to the optimism-based algorithms that have been
analyzed in contextual bandit Dani et al. (2008); Li et al. (2010); Abbasi-Yadkori et al. (2011).
Specifically, BiLin-UCB maintains a confidence set Ht at each iteration where f∗ ∈ Ht with high
probability. Then, the agent chooses the estimator with the highest value estimations (that is why
we say it is optimistic) such that the estimation is higher than that of the ground truth to encourage
exploration:

f t = argmax
f∈Ht

V1,f (x1). (25)

Another line of work focuses on explicitly limiting the length of the longest sequence of effective
distributions with respect to the hypothesis space. Russo & Van Roy (2013) proposes the notion
of the eluder dimension, which generalizes the notion of linear independence in Rd. The eluder
dimension is later leveraged to RL by Wang et al. (2020), which includes the linear MDP Jin et al.
(2020) as a special example. However, Wang et al. (2020) only characterizes the eluder dimension
of the hypothesis space H, and the covered problems are rather limited. Jin et al. (2021a) further
considers the distributional eluder dimension on the induced Bellman residual space (referred to as
the Bellman eluder dimension) so that the eluder dimension is imposed on the interplay between
the function class and the underlying MDP, and captures more RL problems. Jin et al. (2020)
also proposes a model-free OFU-based algorithm, GOLF, which is also based on confidence sets
and optimism equation 25. The main difference between BiLin-UCB and GOLF is that GOLF
additionally assumes the Bellman completeness condition (see Assumption 2) thus leveraging a
minimax formulation Antos et al. (2008) to give a more efficient estimation of the Bellman errors
(see Chapter 5 for a detailed interpretation of these algorithmic choices). Consequently, GOLF
achieves a

√
T -regret, while BiLin-UCB only achieves a T 2/3-regret (by online-to-bach conversion).

We also note that Chen et al. (2022b) generalizes the Bellman completeness assumption to the more
general discrepancy function and applies the minimax formulation to achieve a better regret bound.

It is known that neither the Bellman eluder dimension nor bilinear class captures each other (see
comments on page 6 of Du et al. (2021)). Attempts have been made since then to unify these two

2The example presented here is referred to as the Q-type Bellman rank, which is different from the V-type
one considered in Jiang et al. (2017b). We choose the Q-type one for a clear presentation.
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rich tackable RL problems. Dann et al. (2021) introduces the notion of the eluder coefficient3 and
studies the Q-type model-free problems. The eluder coefficient d(µ) explicitly relates the out-of-
sample average Bellman residual to the in-sample average (squared) Bellman error:

H∑
h=1

T∑
t=1

Eπft Eh(f
t, xh, ah) ≤ µ

H∑
h=1

T∑
t=1

t−1∑
s=1

Eπfs [Eh(f
t, xh, ah)

2] +
d(µ)

4µ
. (26)

Intuitively, the eluder coefficient quantifies the rate at which the prediction error can grow in com-
parison to the cumulative training error on average in an online manner, thus explicitly limiting the
generalization from the visited state-action distributions to the unseen part. Technically, we note
that the eluder coefficient serves to reduce the RL problems into an in-sample error estimation prob-
lem over the hypothesis space H in a supervised learning manner, which is relatively well studied
in the literature. Our complexity measure is mostly related to this eluder coefficient, but with sev-
eral important extensions so that it can unify most of the existing complexity measures. Dann et al.
(2021) also proposes conditional posterior sampling with an optimistic modification in the prior, and
develops new analysis techniques for sampling-based algorithms.

There is also another line of work with distinct technical considerations compared to the above-
mentioned works. Foster et al. (2021; 2022) propose the decision estimation coefficient (DEC) to
unify the complexity measures in interactive decision-making, which takes the MDPs as a special
example. Given a model class M and a reference model M̂ , the DEC is given by

decγ(M, M̂) = inf
p∈∆(Π)

sup
M∈M

Eπ∼p[V1,M (x1)− V π
1,M (x1)︸ ︷︷ ︸

regret of decision

−γ ·D2
H(M(π), M̂(π))︸ ︷︷ ︸

Easy to control

], (27)

where V π
1,M (x1) is the V-value of policy π when M is the underlying model and M(π) denotes the

trajectory distribution jointly determined by the model M and the executed policy π. The technical
consideration is to convert the RL problems into an online learning problem, by reducing the out-
of-sample regret to another out-of-sample divergence D2

H(M(π), M̂(π)). We note such a technical
treatment also arises in the decoupling coefficient proposed in Zhang (2022); Agarwal & Zhang
(2022a;b). The idea of such a conversion may date back to the information ratio Russo & Van Roy
(2014). DEC is a more general complexity measure that captures both the bilinear class and Bellman
eluder dimension. The most appealing part of DEC is the matching lower bound in terms of DEC in
some decision-making problems, which suggests that a low DEC is necessary for sample-efficient
learning. However, the vanilla DEC equation 27 cannot be applied in a model-free manner. To
address this issue, Foster et al. (2022) adopt an optimistic modification as in Zhang (2022), and
extend it to the model-free scenario. However, the regret bound of the model-free E2D obtained
in Foster et al. (2022) is inferior compared to that of Du et al. (2021) under only realizability. We
mention in passing that Chen et al. (2022a) also independently studies the optimistic variant of
DEC. A notable feature of DEC is that it involves a minimax operation, which accounts for the
minimax subroutine in their algorithms, Estimation-to-Decisions (E2D). Such a black box minimax
subroutine may lack efficient computation guidelines in practice and the DEC may not be applied
to analyze the classic OFU-based or sampling-based algorithms. In comparison, the decoupling
coefficient Zhang (2022); Agarwal & Zhang (2022a) does not require solving a minimax problem,
and can be applied to analyze the optimistic algorithms based on posterior sampling or Maximum
Likelihood Estimation (MLE).

Decision-making problems with general function approximation are still an active research direction
and are still developing rapidly toward a deeper understanding of the learnability and the goal of
guiding the design of practical algorithms.
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