Research note on the martingale concentration inequality

Wei Xiong *

Abstract

We are interested in the martingale concentration inequality used in sequential estimation problem.

Contents

1	Intr	oduction	1
2	Mar	rtingale Exponential Inequalities	2
3	Exa	mples with application	3
	3.1	Azuma-Hoeffding's inequality	3
	3.2	Freedman's inequality	3
	3.3	MLE Analysis	4

1 Introduction

This is a research note when reading chapter 13 of Zhang (2023).

In sequential estimation problem, we will observe a sequence of random variables $Z_t \in \mathcal{Z}_t$, where Z_t may depend on the history $\mathcal{S}_{t-1} = [Z_1, \dots, Z_{t-1}] \in \mathcal{Z}^{t-1}$. We denote the sigma algebra generated by \mathcal{S}_t as the filtration \mathcal{F}_t . We say a sequence $\{\xi_t\}$ is adapted to the filtration $\{\mathcal{F}_t\}$, if each ξ_t is a function of \mathcal{S}_t . That is, each ξ_t does not depend on the future $(Z_s, s > t)$. This is also referred to as that ξ_t is measurable in \mathcal{F}_t . The sequence

$$\xi_t'(\mathcal{S}_t) := \xi_t(\mathcal{S}_t) - \mathbb{E}[\xi_t(\mathcal{S}_t)|\mathcal{F}_{t-1}] = \xi_t(\mathcal{S}_t) - \mathbb{E}_{Z_t|\mathcal{S}_{t-1}}\xi_t(\mathcal{S}_t),$$

is referred to as a martingale difference sequence, where we have

$$\mathbb{E}[\xi_t'|\mathcal{F}_{t-1}] = 0$$

The sum of such a martingale difference sequence

$$\sum_{s=1}^t \xi'_s = \sum_{s=1}^t \xi'_s(\mathcal{S}_s)$$

is referred to as a martingale. In what follows, we further assume that $\mathcal{Z} = \mathcal{Z}^{(x)} \times \mathcal{Z}^{(y)}$ and $Z_t = (Z_t^{(x)}, Z_t^{(y)})$. For instance, the $Z_t^{(x)}$ may be regarded as the context of the contextual bandit in iteration t, while $Z_t^{(y)}$ is the random reward.

^{*}Email: wx130illinois.edu

2 Martingale Exponential Inequalities

For notation simplicity, we use

$$\mathbb{E}_{Z_t^{(y)}}[\cdot] := \mathbb{E}_{Z_t^{(y)} | Z_t^{(x)}, \mathcal{S}_{t-1}}[\cdot].$$

Lemma 1 (Martingale Exponential Inequalities). Consider a sequence of real-valued random functions $\xi_1(S_1), \dots, \xi_T(S_T)$. Let $\tau \leq T$ be a stopping time so that $\mathbb{I}(t \leq \tau)$ is measurable in S_t . We have

$$\mathbb{E}_{\mathcal{S}_T} \exp\left(\sum_{s=1}^{\tau} \xi_i - \sum_{s=1}^{\tau} \log \mathbb{E}_{Z_i^{(y)}} \exp(\xi_i)\right) = 1.$$

where $Z_t = (Z_t^{(x)}, Z_t^{(y)})$ and $Z_t = (Z_1, \dots, Z_t)$.

Proof. We prove by induction on T'. When T' = 0, the inequality is trivial. Now suppose that it holds for T' - 1 for some $T' \ge 1$. We let $\tilde{\xi}_i = \xi_i \mathbb{I}(i \le \tau)$ which is measurable in S_i . We have

$$\sum_{s=1}^{\tau} \xi_i - \sum_{s=1}^{\tau} \log \mathbb{E}_{Z_i^{(y)}} \exp(\xi_i) = \sum_{s=1}^{\tau} \widetilde{\xi_i} - \sum_{s=1}^{\tau} \log \mathbb{E}_{Z_i^{(y)}} \exp(\widetilde{\xi_i}).$$

It follows that

$$\begin{split} & \mathbb{E}_{Z_{1},\cdots,Z_{T'}} \exp\left(\sum_{s=1}^{\tau} \xi_{i} - \sum_{s=1}^{\tau} \log \mathbb{E}_{Z_{i}^{(y)}} \exp(\xi_{i})\right) \\ &= \mathbb{E}_{Z_{1},\cdots,Z_{T'}} \exp\left(\sum_{s=1}^{T'} \widetilde{\xi}_{i} - \sum_{s=1}^{T'} \log \mathbb{E}_{Z_{i}^{(y)}} \exp(\widetilde{\xi}_{i})\right) \\ &= \mathbb{E}_{Z_{1},\cdots,Z_{T'}^{(x)}} \left[\exp\left(\sum_{s=1}^{T'-1} \widetilde{\xi}_{i} - \sum_{s=1}^{T'-1} \log \mathbb{E}_{Z_{i}^{(y)}} \exp(\widetilde{\xi}_{i})\right) \mathbb{E}_{Z_{T'}^{(y)}} \exp\left(\widetilde{\xi}_{T'} - \log \mathbb{E}_{Z_{T'}^{(y)}} \exp(\widetilde{\xi}_{T'})\right) \right] \\ &= \mathbb{E}_{Z_{1},\cdots,Z_{T'-1}} \left[\exp\left(\sum_{s=1}^{T'-1} \widetilde{\xi}_{i} - \sum_{s=1}^{T'-1} \log \mathbb{E}_{Z_{i}^{(y)}} \exp(\widetilde{\xi}_{i})\right) \right] \\ &= \mathbb{E}_{Z_{1},\cdots,Z_{\min(\tau,T'-1)}} \left[\exp\left(\sum_{s=1}^{\min(\tau,T'-1)} \xi_{i} - \sum_{s=1}^{\min(\tau,T'-1)} \log \mathbb{E}_{Z_{i}^{(y)}} \exp(\xi_{i})\right) \right] = 1. \end{split}$$

Here, the last inequality follows from $\min(\tau, T'-1)$ is a stopping time $\leq T'-1$ so we can use the induction hypothesis.

As a corollary, we have the following counterpart of Chernoff inequality.

Lemma 2 (Martingale Concentration inequality). Consider a sequence of real-valued random functions $\xi_1(S_1), \dots, \xi_T(S_T)$ adapted to the filtration \mathcal{F}_t . We have for any $\delta \in (0, 1)$ and $\lambda > 0$:

$$\mathbb{P}\Big[\exists n > 0 : -\sum_{i=1}^{n} \xi_i \ge \frac{\log(1/\delta)}{\lambda} + \frac{1}{\lambda} \sum_{i=1}^{n} \log \mathbb{E}_{Z_i^{(y)}} \exp(-\lambda\xi_i)\Big] \le \delta.$$

Proof. The proof can be found in Chapter 13 of Zhang (2023).

Remark 1. One interesting observation is that Lemma 2 already ensures that the inequality holds for arbitrary n > 0 with high probability, while in the i.i.d. setting, this may come from an additional uniform convergence argument. However, we note that the hyper-parameter $\lambda > 0$ is fixed across n > 0, which leads to subtle difference in application of the above lemma. We present several examples in the next section.

3 Examples with application

3.1 Azuma-Hoeffding's inequality

Lemma 3 (Martingale Sub-Gaussian inequality). Consider a sequence of random functions $\xi_1(\mathcal{S}_1), \dots, \xi_t(\mathcal{S}_t), \dots$. Assume each ξ_i is sub-Gaussian with respect to $Z_i^{(y)}$:

$$\log \mathbb{E}_{Z_i^{(y)}} \le \lambda \mathbb{E}_{Z_i^{(y)}} \xi_i + \frac{\lambda^2 \sigma_i^2}{2}$$

for some σ_i that may depend on \mathcal{S}_{i-1} and $Z_i^{(x)}$. Then for all $\sigma > 0$, with probability at least $1 - \delta$,

$$\forall n > 0 : \sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(y)}} \xi_{i} < \sum_{i=1}^{n} \xi_{i} + \left(\sigma + \frac{\sum_{i=1}^{n} \sigma_{i}^{2}}{\sigma}\right) \sqrt{\frac{\log(1/\delta)}{2}}.$$

Proof. We set $\lambda = \sqrt{2 \log(1/\delta)} / \sigma$ and apply Lemma 2.

The main problem is that the σ (essentially, the λ in Lemma 2) has to be fixed for all n. Therefore, one cannot set $\sigma = \sqrt{\sum_{i=1}^{n} \sigma_i^2}$ to achieve the best bound for all n. Tuning the parameter requires us to pay for another $\log T$.

Lemma 4 (Azuma-Hoeffding's inequality). Consider a sequence of random functions $\xi_1(S_1), \dots, \xi_n(S_n)$ with a fixed n > 0. If for each $i : \sup \xi_i - \inf \xi_i \leq M_i$ for some constant M_i , then with probability at least $1 - \delta$,

$$\sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(y)}} \xi_{i} < \sum_{i=1}^{n} \xi_{i} + \sqrt{\frac{\sum_{i=1}^{n} M_{i}^{2} \log(1/\delta)}{2}}.$$

3.2 Freedman's inequality

Lemma 5 (Freedman's/Bernstein's inequality for martingale). Let ξ'_t be the martingale difference defined in Section 1. If $|\xi'_t| \leq R$ almost surely, then for any $\eta \in (0, 1/R)$, with probability at least $1 - \delta$, for all $T' \leq T$,

$$\sum_{t=1}^{T'} \xi'_t \le \eta \sum_{t=1}^{T'} \mathbb{E}_{t-1}[(\xi'_t)^2] + \frac{\log(1/\delta)}{\eta}.$$

Proof. We define $\zeta_s = \eta \xi'_s - \eta^2 \mathbb{E}_{Z_s^{(y)}}(\xi'_s)^2$, which is measurable in \mathcal{S}_s . Then, we estimate the conditional log-moment-generating function as follows

$$\begin{split} & \mathbb{E}_{Z_{s}^{(y)}} \exp\left(\zeta_{s}\right) \\ &= \mathbb{E}_{Z_{s}^{(y)}} \exp\left(\eta\xi_{s}' - \eta^{2}\mathbb{E}_{Z_{s}^{(y)}}(\xi_{s}')^{2}\right) \\ &= \exp\left(-\eta^{2}\mathbb{E}_{Z_{s}^{(y)}}(\xi_{s}')^{2}\right) \cdot \mathbb{E}_{Z_{s}^{(y)}} \exp\left(\eta\xi_{s}'\right) \\ &\leq \exp\left(-\eta^{2}\mathbb{E}_{Z_{s}^{(y)}}(\xi_{s}')^{2}\right) \cdot \mathbb{E}_{Z_{s}^{(y)}}\left[1 + \eta\xi_{s}' + (e-2)(\eta\xi_{s}')^{2}\right] \\ &= \exp\left(-\eta^{2}\mathbb{E}_{Z_{s}^{(y)}}(\xi_{s}')^{2}\right) \cdot \left[1 + (e-2)\mathbb{E}_{Z_{s}^{(y)}}(\eta\xi_{s}')^{2}\right] \\ &\leq \exp\left(-\eta^{2}\mathbb{E}_{Z_{s}^{(y)}}(\xi_{s}')^{2}\right) \cdot \mathbb{E}_{Z_{s}^{(y)}} \exp\left((e-2)(\eta\xi_{s}')^{2}\right) \\ &\leq e^{0} = 1, \end{split}$$

where we use $e^a \leq 1 + a + (e - 2)a^2$ for $a \leq 1$ in the first inequality (the constraint on η), and $\mathbb{E}_{Z_s^{(y)}}\xi'_s = 0$ because ξ'_s is a martingale difference sequence. The second inequality uses $1 + a \leq e^a$ for all $a \in \mathbb{R}$. Then, we can invoke Lemma 2 with $\{\zeta_t\}$ and $\lambda = 1$ to obtain that

$$\forall n > 0, \sum_{i=1}^{n} \zeta_i < \frac{\log(1/\delta)}{\eta} + \sum_{i=1}^{n} \log \mathbb{E}_{Z_i^{(y)}} \exp(-\zeta_i) \le \log(1/\delta).$$

Plugging $\zeta_i = \eta \xi'_i - \eta^2 \mathbb{E}_{Z_s^{(y)}}(\xi'_s)^2$ finishes the proof.

Example 1. We consider the contextual bandit problem with general function approximation. For $f \in \mathcal{F}$, we define

$$U^{t}(f) = \left(f(x^{t}, a^{t}) - r^{t}\right)^{2} - \left(f^{*}(x^{t}, a^{t}) - r^{t}\right)^{2}.$$

We have

$$\mathbb{E}_{t-1}U^t(f) = \mathbb{E}_{t-1}(f(x^t, a^t) - f^*(x^t, a^t))^2,$$

where on the RHS, there is still randomness for a^t and $\mathbb{E}_{t-1}[\cdot] = \mathbb{E}[\cdot|\mathcal{H}^{t-1}, x^t]$. Then $Z^t(f) = \mathbb{E}_{t-1}U^t(f) - U^t(f)$ is a martingale difference and $\sum_{t=1}^{\tau} Z^t(f)$ is a martingale sequence. Since the increment $|Z^t(f)| \leq 1$, we can apply the Freedman's inequality to get that w.p. at least $1 - \delta$, for all $\tau \leq T$,

$$\sum_{t=1}^{\tau} Z^{t}(f) \le \frac{1}{8} \mathbb{E}_{t-1}[Z^{t}(f)^{2}] + 8\log(1/\delta).$$

We can control the second-order bound by

$$\mathbb{E}_{t-1}[Z^t(f)^2] \le 4\mathbb{E}_{t-1}[(f(x^t, a^t) - f^*(x^t, a^t))^2] = 4\mathbb{E}_{t-1}U^t(f),$$

where it follows that

$$\frac{1}{2} \sum_{t=1}^{\tau} \mathbb{E}_{t-1} U^t(f) \le \sum_{t=1}^{\tau} U^t(f) + 8 \log(1/\delta).$$

Since $0 \leq \frac{1}{2} \sum_{t=1}^{\tau} \mathbb{E}_{t-1} U^t(f) \leq \sum_{t=1}^{\tau} U^t(f) + 8 \log(1/\delta)$, we have

$$\sum_{t=1}^{\tau} (f^*(x^t, a^t) - r^t)^2 \le \sum_{t=1}^{\tau} (f(x^t, a^t) - r^t)^2 + 8\log(1/\delta).$$

Taking a union bound over f, we have

$$\sum_{t=1}^{\tau} (f^*(x^t, a^t) - r^t)^2 \le \sum_{t=1}^{\tau} (f(x^t, a^t) - r^t)^2 + 8\log(|\mathcal{F}|/\delta),$$

holds with probability at least $1 - \delta$ for any $f \in [F], \tau \in [T]$.

A distinct feature is that since we do not tune $\eta > 0$ for different times step, we can directly invoke the inequality that holds for all n > 0. Therefore, we do not pay for an additional log T here.

If one wishes to work with the random variables directly, we have the following result.

Lemma 6. Let $(\xi_t)_{t\leq T}$ be a sequence of random variables adapted to a filtration $(\mathcal{F}_t)_{t\leq T}$. If $0 \leq \xi_t \leq R$ almost surely, then with probability at least $1 - \delta$,

$$\sum_{t=1}^{T} \xi_t \le \frac{3}{2} \sum_{t=1}^{T} \mathbb{E}_{Z_t^{(y)}}[\xi_t] + 4R \log(2\delta^{-1}),$$

and

$$\sum_{t=1}^{T} \mathbb{E}_{Z_t^{(y)}}[\xi_t] \le 2 \sum_{t=1}^{T} \xi_t + 8R \log(2\delta^{-1}).$$

3.3 MLE Analysis

As an additional example, we consider the model-based case, where we need to estimate the Hellinger distance between the model and the true model via the likelihood estimator.

Suppose that for each iteration t, we will choose a model $M^t \in \mathcal{M}$ (e.g. by UCB or posterior sampling) and collect a new trajectory by executing $x_h \sim \pi_{M^t}, a_h \sim \tilde{\pi}_t$, where $\tilde{\pi}_t$ is either π_{M^t} (Q-type) or a uniform

exploration over \mathcal{A} (V-type). Then, suppose that we set $\beta_h = 2\log(H|\mathcal{M}_h|/\delta)$, with probability at least $1-\delta$, for all $t \in [T]$, we have

$$\sum_{h=1}^{H} \sum_{s=1}^{t-1} \mathbb{E}_{x_h \sim \pi_{M^s}, a_h \sim \widetilde{\pi}_s} D_{\mathrm{H}}^2 \big(\mathbb{P}_{h,M}(\cdot \mid x_h, a_h), \mathbb{P}_{h,M^*}(\cdot \mid x_h, a_h) \big) \le \beta,$$

where $\beta := \sum_{h=1}^{H} \beta_h = 2 \log(H|\mathcal{M}|/\delta)$ and $\widetilde{\pi}_s$ is either π_{M^s} or $\text{Unif}(\mathcal{A})$.

We have the following estimation of the moment-generating function. For any $M \in \mathcal{M}$, we have

$$\begin{split} & \mathbb{E}\Big[\exp\Big(\frac{1}{2}\sum_{s=1}^{t}\log\frac{\mathbb{P}_{h,M}(x_{h+1}^{s}\mid x_{h}^{s}, a_{h}^{s})}{\mathbb{P}_{h,M^{*}}(x_{h+1}^{s}\mid x_{h}^{s}, a_{h}^{s})}\Big)\Big] \\ &= \mathbb{E}\Big[\exp\Big(\frac{1}{2}\sum_{s=1}^{t-1}\log\frac{\mathbb{P}_{h,M}(x_{h+1}^{s}\mid x_{h}^{s}, a_{h}^{s})}{\mathbb{P}_{h,M^{*}}(x_{h+1}^{s}\mid x_{h}^{s}, a_{h}^{s})}\Big)\Big]\mathbb{E}_{t}\sqrt{\frac{\mathbb{P}_{h,M}(x_{h+1}^{s}\mid x_{h}^{t}, a_{h}^{t})}{\mathbb{P}_{h,M^{*}}(x_{h+1}^{s}\mid x_{h}^{s}, a_{h}^{s})}}\Big)\\ &= \mathbb{E}\Big[\exp\Big(\frac{1}{2}\sum_{s=1}^{t-1}\log\frac{\mathbb{P}_{h,M}(x_{h+1}^{s}\mid x_{h}^{s}, a_{h}^{s})}{\mathbb{P}_{h,M^{*}}(x_{h+1}^{s}\mid x_{h}^{s}, a_{h}^{s})}\Big)\Big]\mathbb{E}_{x_{h}\sim\pi_{M^{t}}, a_{h}\sim\pi_{t}}\int_{x\in\mathcal{S}}\sqrt{\mathbb{P}_{h,M}(x\mid x_{h}, a_{h})\cdot\mathbb{P}_{h,M^{*}}(x\mid x_{h}, a_{h})}\\ &= \mathbb{E}\Big[\exp\Big(\frac{1}{2}\sum_{s=1}^{t-1}\log\frac{\mathbb{P}_{h,M}(x_{h+1}^{s}\mid x_{h}^{s}, a_{h}^{s})}{\mathbb{P}_{h,M^{*}}(x_{h+1}^{s}\mid x_{h}^{s}, a_{h}^{s})}\Big)\Big]\Big(1-\mathbb{E}_{x_{h}\sim\pi_{M^{t}}, a_{h}\sim\pi_{t}}D_{\mathrm{H}}^{2}\Big(\mathbb{P}_{h,M}(\cdot\mid x_{h}, a_{h}),\mathbb{P}_{h,M^{*}}(\cdot\mid x_{h}, a_{h})\Big)\Big)\\ &=\cdots\\ &=\prod_{s=1}^{t}\Big(1-\mathbb{E}_{x_{h}\sim\pi_{M^{s}}, a_{h}\sim\pi_{s}}D_{\mathrm{H}}^{2}\Big(\mathbb{P}_{h,M}(\cdot\mid x_{h}, a_{h}),\mathbb{P}_{h,M^{*}}(\cdot\mid x_{h}, a_{h})\Big)\Big) \end{split}$$

We now invoke Lemma 1 to obtain that for any fixed M_h , we have

$$\begin{split} 1 - \frac{\delta}{H|\mathcal{M}_{h}|} &\leq \mathbb{P} \bigg[\forall t > 0 : \frac{1}{2} \sum_{s=1}^{t} \log \frac{\mathbb{P}_{h,M}(x_{h+1}^{s} \mid x_{h}^{s}, a_{h}^{s})}{\mathbb{P}_{h,M^{*}}(x_{h+1}^{s} \mid x_{h}^{s}, a_{h}^{s})} \leq \log(H|\mathcal{M}_{h}|/\delta) \\ &+ \sum_{s=1}^{t} \log \bigg(1 - \mathbb{E}_{x_{h} \sim \pi_{M^{s}}, a_{h} \sim \widetilde{\pi}_{s}} D_{\mathrm{H}}^{2} \Big(\mathbb{P}_{h,M}(\cdot \mid x_{h}, a_{h}), \mathbb{P}_{h,M^{*}}(\cdot \mid x_{h}, a_{h}) \Big) \bigg] \\ &\leq \mathbb{P} \bigg[\forall t > 0 : \frac{1}{2} \sum_{s=1}^{t} \log \frac{\mathbb{P}_{h,M}(x_{h+1}^{s} \mid x_{h}^{s}, a_{h}^{s})}{\mathbb{P}_{h,M^{*}}(x_{h+1}^{s} \mid x_{h}^{s}, a_{h}^{s})} \leq \log(H|\mathcal{M}_{h}|/\delta) \\ &- \sum_{s=1}^{t} \mathbb{E}_{x_{h} \sim \pi_{M^{s}}, a_{h} \sim \widetilde{\pi}_{s}} D_{\mathrm{H}}^{2} \Big(\mathbb{P}_{h,M}(\cdot \mid x_{h}, a_{h}), \mathbb{P}_{h,M^{*}}(\cdot \mid x_{h}, a_{h}) \Big) \bigg] \end{split}$$

where we use $\log(1-x) \leq -x$ for $x \leq 1$. With a union bound over \mathcal{M}_h and then [H], we conclude that with probability at least $1-\delta$, we have for all $t \in [T]$, and for all $h \in [H]$,

$$\sum_{s=1}^{t} \mathbb{E}_{x_{h} \sim \pi_{M^{s}}, a_{h} \sim \widetilde{\pi}_{s}} D_{\mathrm{H}}^{2} \big(\mathbb{P}_{h,M}(\cdot \mid x_{h}, a_{h}), \mathbb{P}_{h,M^{*}}(\cdot \mid x_{h}, a_{h}) \big) \leq \sum_{s=1}^{t} \frac{1}{2} \log \frac{\mathbb{P}_{h,M^{*}}(x_{h+1}^{s} \mid x_{h}^{s}, a_{h}^{s})}{\mathbb{P}_{h,M}(x_{h+1}^{s} \mid x_{h}^{s}, a_{h}^{s})} + \log(H|\mathcal{M}_{h}|/\delta).$$

We also save a log T because we do not need to tune the parameter λ in Lemma 2.

References

Tong Zhang. Mathematical analysis of machine learning algorithms. 2023. doi: 10.1017/9781009093057.