
Research note on the martingale concentration inequality

Wei Xiong ∗

Abstract

We are interested in the martingale concentration inequality used in sequential estimation
problem.
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1 Introduction

This is a research note when reading chapter 13 of Zhang (2023).

In sequential estimation problem, we will observe a sequence of random variables Zt ∈ Zt, where Zt may
depend on the history St−1 = [Z1, · · · , Zt−1] ∈ Zt−1. We denote the sigma algebra generated by St as the
filtration Ft. We say a sequence {ξt} is adapted to the filtration {Ft}, if each ξt is a function of St. That
is, each ξt does not depend on the future (Zs, s > t). This is also referred to as that ξt is measurable in Ft.
The sequence

ξ′
t(St) := ξt(St) − E[ξt(St)|Ft−1] = ξt(St) − EZt|St−1ξt(St),

is referred to as a martingale difference sequence, where we have

E[ξ′
t|Ft−1] = 0.

The sum of such a martingale difference sequence

t∑
s=1

ξ′
s =

t∑
s=1

ξ′
s(Ss)

is referred to as a martingale. In what follows, we further assume that Z = Z(x) ×Z(y) and Zt = (Z(x)
t , Z

(y)
t ).

For instance, the Z
(x)
t may be regarded as the context of the contextual bandit in iteration t, while Z

(y)
t is

the random reward.
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2 Martingale Exponential Inequalities

For notation simplicity, we use
E

Z
(y)
t

[·] := E
Z

(y)
t |Z(x)

t ,St−1
[·].

Lemma 1 (Martingale Exponential Inequalities). Consider a sequence of real-valued random functions
ξ1(S1), · · · , ξT (ST ). Let τ ≤ T be a stopping time so that I(t ≤ τ) is measurable in St. We have

EST
exp

( τ∑
s=1

ξi −
τ∑

s=1
logE

Z
(y)
i

exp(ξi)
)

= 1.

where Zt = (Z(x)
t , Z

(y)
t ) and Zt = (Z1, · · · , Zt).

Proof. We prove by induction on T ′. When T ′ = 0, the inequality is trivial. Now suppose that it holds for
T ′ − 1 for some T ′ ≥ 1. We let ξ̃i = ξiI(i ≤ τ) which is measurable in Si. We have

τ∑
s=1

ξi −
τ∑

s=1
logE

Z
(y)
i

exp(ξi) =
τ∑

s=1
ξ̃i −

τ∑
s=1

logE
Z

(y)
i

exp(ξ̃i).

It follows that

EZ1,··· ,ZT ′ exp
( τ∑

s=1
ξi −

τ∑
s=1

logE
Z

(y)
i

exp(ξi)
)

= EZ1,··· ,ZT ′ exp
( T ′∑

s=1
ξ̃i −

T ′∑
s=1

logE
Z

(y)
i

exp(ξ̃i)
)

= E
Z1,··· ,Z

(x)
T ′

[
exp

( T ′−1∑
s=1

ξ̃i −
T ′−1∑
s=1

logE
Z

(y)
i

exp(ξ̃i)
)
E

Z
(y)
T ′

exp
(
ξ̃T ′ − logE

Z
(y)
T ′

exp(ξ̃T ′)
)]

= EZ1,··· ,ZT ′−1

[
exp

( T ′−1∑
s=1

ξ̃i −
T ′−1∑
s=1

logE
Z

(y)
i

exp(ξ̃i)
)]

= EZ1,··· ,Zmin(τ,T ′−1)

[
exp

( min(τ,T ′−1)∑
s=1

ξi −
min(τ,T ′−1)∑

s=1
logE

Z
(y)
i

exp(ξi)
)]

= 1.

Here, the last inequality follows from min(τ, T ′ − 1) is a stopping time ≤ T ′ − 1 so we can use the induction
hypothesis.

As a corollary, we have the following counterpart of Chernoff inequality.
Lemma 2 (Martingale Concentration inequality). Consider a sequence of real-valued random functions
ξ1(S1), · · · , ξT (ST ) adapted to the filtration Ft. We have for any δ ∈ (0, 1) and λ > 0:

P
[
∃n > 0 : −

n∑
i=1

ξi ≥ log(1/δ)
λ

+ 1
λ

n∑
i=1

logE
Z

(y)
i

exp(−λξi)
]

≤ δ.

Proof. The proof can be found in Chapter 13 of Zhang (2023).

Remark 1. One interesting observation is that Lemma 2 already ensures that the inequality holds for ar-
bitrary n > 0 with high probability, while in the i.i.d. setting, this may come from an additional uniform
convergence argument. However, we note that the hyper-parameter λ > 0 is fixed across n > 0, which leads
to subtle difference in application of the above lemma. We present several examples in the next section.
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3 Examples with application

3.1 Azuma-Hoeffding’s inequality

Lemma 3 (Martingale Sub-Gaussian inequality). Consider a sequence of random functions
ξ1(S1), · · · , ξt(St), · · · . Assume each ξi is sub-Gaussian with respect to Z

(y)
i :

logE
Z

(y)
i

≤ λE
Z

(y)
i

ξi + λ2σ2
i

2

for some σi that may depend on Si−1 and Z
(x)
i . Then for all σ > 0, with probability at least 1 − δ,

∀n > 0 :
n∑

i=1
E

Z
(y)
i

ξi <

n∑
i=1

ξi +
(
σ +

∑n
i=1 σ2

i

σ

)√
log(1/δ)

2 .

Proof. We set λ =
√

2 log(1/δ)/σ and apply Lemma 2.

The main problem is that the σ (essentially, the λ in Lemma 2 ) has to be fixed for all n. Therefore, one
cannot set σ =

√∑n
i=1 σ2

i to achieve the best bound for all n. Tuning the parameter requires us to pay for
another log T .
Lemma 4 (Azuma-Hoeffding’s inequality). Consider a sequence of random functions ξ1(S1), · · · , ξn(Sn)
with a fixed n > 0. If for each i : sup ξi − inf ξi ≤ Mi for some constant Mi, then with probability at least
1 − δ,

n∑
i=1

E
Z

(y)
i

ξi <

n∑
i=1

ξi +
√∑n

i=1 M2
i log(1/δ)
2 .

3.2 Freedman’s inequality

Lemma 5 (Freedman’s/Bernstein’s inequality for martingale). Let ξ′
t be the martingale difference defined in

Section 1. If |ξ′
t| ≤ R almost surely, then for any η ∈ (0, 1/R), with probability at least 1 − δ, for all T ′ ≤ T ,

T ′∑
t=1

ξ′
t ≤ η

T ′∑
t=1

Et−1[(ξ′
t)2] + log(1/δ)

η
.

Proof. We define ζs = ηξ′
s − η2E

Z
(y)
s

(ξ′
s)2, which is measurable in Ss. Then, we estimate the conditional

log-moment-generating function as follows

E
Z

(y)
s

exp
(

ζs

)
= E

Z
(y)
s

exp
(

ηξ′
s − η2E

Z
(y)
s

(ξ′
s)2

)
= exp

(
− η2E

Z
(y)
s

(ξ′
s)2)

· E
Z

(y)
s

exp
(
ηξ′

s

)
≤ exp

(
− η2E

Z
(y)
s

(ξ′
s)2)

· E
Z

(y)
s

[
1 + ηξ′

s + (e − 2)(ηξ′
s)2]

= exp
(

− η2E
Z

(y)
s

(ξ′
s)2)

·
[
1 + (e − 2)E

Z
(y)
s

(ηξ′
s)2]

≤ exp
(

− η2E
Z

(y)
s

(ξ′
s)2)

· E
Z

(y)
s

exp
(

(e − 2)(ηξ′
s)2

)
≤ e0 = 1,

where we use ea ≤ 1 + a + (e − 2)a2 for a ≤ 1 in the first inequality (the constraint on η), and E
Z

(y)
s

ξ′
s = 0

because ξ′
s is a martingale difference sequence. The second inequality uses 1 + a ≤ ea for all a ∈ R. Then,

we can invoke Lemma 2 with {ζt} and λ = 1 to obtain that

∀n > 0,

n∑
i=1

ζi <
log(1/δ)

η
+

n∑
i=1

logE
Z

(y)
i

exp(−ζi) ≤ log(1/δ).
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Plugging ζi = ηξ′
i − η2E

Z
(y)
s

(ξ′
s)2 finishes the proof.

Example 1. We consider the contextual bandit problem with general function approximation. For f ∈ F ,
we define

U t(f) =
(
f(xt, at) − rt

)2 −
(
f∗(xt, at) − rt

)2
.

We have
Et−1U t(f) = Et−1(f(xt, at) − f∗(xt, at))2,

where on the RHS, there is still randomness for at and Et−1[·] = E[·|Ht−1, xt]. Then Zt(f) = Et−1U t(f) −
U t(f) is a martingale difference and

∑τ
t=1 Zt(f) is a martingale sequence. Since the increment |Zt(f)| ≤ 1,

we can apply the Freedman’s inequality to get that w.p. at least 1 − δ, for all τ ≤ T ,
τ∑

t=1
Zt(f) ≤ 1

8Et−1[Zt(f)2] + 8 log(1/δ).

We can control the second-order bound by

Et−1[Zt(f)2] ≤ 4Et−1[(f(xt, at) − f∗(xt, at))2] = 4Et−1U t(f),

where it follows that
1
2

τ∑
t=1

Et−1U t(f) ≤
τ∑

t=1
U t(f) + 8 log(1/δ).

Since 0 ≤ 1
2

∑τ
t=1 Et−1U t(f) ≤

∑τ
t=1 U t(f) + 8 log(1/δ), we have

τ∑
t=1

(f∗(xt, at) − rt)2 ≤
τ∑

t=1
(f(xt, at) − rt)2 + 8 log(1/δ).

Taking a union bound over f , we have
τ∑

t=1
(f∗(xt, at) − rt)2 ≤

τ∑
t=1

(f(xt, at) − rt)2 + 8 log(|F|/δ),

holds with probability at least 1 − δ for any f ∈ [F ], τ ∈ [T ].

A distinct feature is that since we do not tune η > 0 for different times step, we can directly invoke the
inequality that holds for all n > 0. Therefore, we do not pay for an additional log T here.

If one wishes to work with the random variables directly, we have the following result.
Lemma 6. Let (ξt)t≤T be a sequence of random variables adapted to a filtration (Ft)t≤T . If 0 ≤ ξt ≤ R
almost surely, then with probability at least 1 − δ,

T∑
t=1

ξt ≤ 3
2

T∑
t=1

E
Z

(y)
t

[ξt] + 4R log(2δ−1),

and
T∑

t=1
E

Z
(y)
t

[ξt] ≤ 2
T∑

t=1
ξt + 8R log(2δ−1).

3.3 MLE Analysis

As an additional example, we consider the model-based case, where we need to estimate the Hellinger distance
between the model and the true model via the likelihood estimator.

Suppose that for each iteration t, we will choose a model M t ∈ M (e.g. by UCB or posterior sampling)
and collect a new trajectory by executing xh ∼ πMt , ah ∼ π̃t, where π̃t is either πMt (Q-type) or a uniform
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exploration over A (V-type). Then, suppose that we set βh = 2 log(H|Mh|/δ), with probability at least
1 − δ, for all t ∈ [T ], we have

H∑
h=1

t−1∑
s=1

E
xh∼πMs ,ah∼π̃s

D2
H

(
Ph,M (· | xh, ah),Ph,M∗(· | xh, ah)

)
≤ β,

where β :=
∑H

h=1 βh = 2 log(H|M|/δ) and π̃s is either πMs or Unif(A).

We have the following estimation of the moment-generating function. For any M ∈ M, we have

E
[

exp
(1

2

t∑
s=1

log
Ph,M (xs

h+1 | xs
h, as

h)
Ph,M∗ (xs

h+1 | xs
h

, as
h

)

)]
= E

[
exp

(1
2

t−1∑
s=1

log
Ph,M (xs

h+1 | xs
h, as

h)
Ph,M∗ (xs

h+1 | xs
h

, as
h

)

)]
Et

√
Ph,M (xs

h+1 | xt
h

, at
h

)
Ph,M∗ (xs

h+1 | xt
h

, at
h

)

= E
[

exp
(1

2

t−1∑
s=1

log
Ph,M (xs

h+1 | xs
h, as

h)
Ph,M∗ (xs

h+1 | xs
h

, as
h

)

)]
E

xh∼πMt ,ah∼π̃t

∫
x∈S

√
Ph,M (x | xh, ah) · Ph,M∗ (x | xh, ah)

= E
[

exp
(1

2

t−1∑
s=1

log
Ph,M (xs

h+1 | xs
h, as

h)
Ph,M∗ (xs

h+1 | xs
h

, as
h

)

)](
1 − E

xh∼πMt ,ah∼π̃t
D2

H
(
Ph,M (· | xh, ah),Ph,M∗ (· | xh, ah)

))
= · · ·

=
t∏

s=1

(
1 − E

xh∼πMs ,ah∼π̃s
D2

H
(
Ph,M (· | xh, ah),Ph,M∗ (· | xh, ah)

))
We now invoke Lemma 1 to obtain that for any fixed Mh, we have

1 −
δ

H|Mh|
≤ P

[
∀t > 0 :

1
2

t∑
s=1

log
Ph,M (xs

h+1 | xs
h, as

h)
Ph,M∗ (xs

h+1 | xs
h

, as
h

)
≤ log(H|Mh|/δ)

+
t∑

s=1

log
(

1 − E
xh∼πMs ,ah∼π̃s

D2
H

(
Ph,M (· | xh, ah),Ph,M∗ (· | xh, ah)

)]
≤ P

[
∀t > 0 :

1
2

t∑
s=1

log
Ph,M (xs

h+1 | xs
h, as

h)
Ph,M∗ (xs

h+1 | xs
h

, as
h

)
≤ log(H|Mh|/δ)

−
t∑

s=1

E
xh∼πMs ,ah∼π̃s

D2
H

(
Ph,M (· | xh, ah),Ph,M∗ (· | xh, ah)

)]
where we use log(1 − x) ≤ −x for x ≤ 1. With a union bound over Mh and then [H], we conclude that with
probability at least 1 − δ, we have for all t ∈ [T ], and for all h ∈ [H],

t∑
s=1

E
xh∼πMs ,ah∼π̃s

D2
H

(
Ph,M (· | xh, ah),Ph,M∗(· | xh, ah)

)
≤

t∑
s=1

1
2 log

Ph,M∗(xs
h+1 | xs

h, as
h)

Ph,M (xs
h+1 | xs

h, as
h) + log(H|Mh|/δ).

We also save a log T because we do not need to tune the parameter λ in Lemma 2.
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