Research note on the martingale concentration inequality
Wei Xiong *

Abstract

We are interested in the martingale concentration inequality used in sequential estimation

problem.
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1 Introduction

This is a research note when reading chapter 13 of [Zhang] (2023).

In sequential estimation problem, we will observe a sequence of random variables Z; € Z;, where Z; may
depend on the history S;_1 = [Z1,--+, Z;_1] € Z!~1. We denote the sigma algebra generated by S; as the
filtration F;. We say a sequence {&;} is adapted to the filtration {F;}, if each & is a function of S;. That
is, each & does not depend on the future (Zs,s > t). This is also referred to as that & is measurable in F;.
The sequence

§1(St) = &(St) — E[e(Se)|Feo1] = &(St) — Ez,ps,_,&t(Sh),

is referred to as a martingale difference sequence, where we have
E[&|Fe-1] = 0.

The sum of such a martingale difference sequence

is referred to as a martingale. In what follows, we further assume that Z = Z® x Z®) and Z, = (21", Z).
For instance, the Zt(w) may be regarded as the context of the contextual bandit in iteration ¢, while Zt(y) is
the random reward.
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2 Martingale Exponential Inequalities

For notation simplicity, we use

]EZt(y) [] = Ezt(?/) ‘Zt(m)78t—1 []

Lemma 1 (Martingale Exponential Inequalities). Consider a sequence of real-valued random functions
&1(S1),- -+ ,&r(ST). Let 7 < T be a stopping time so that I(t < 1) is measurable in S;. We have

Es,. exp (Z& - ZIOgEzfy) exp(&)) =1

s=1 s=1

where Z; = (Zt(w), Zt(y)) and Zy = (Z1,-++ , Z4).

Proof. We prove by induction on 7’. When T" = 0, the inequality is trivial. Now suppose that it holds for
T — 1 for some T7 > 1. We let §; = &1(i < 7) which is measurable in S;. We have

Zfz Zlog Ew exp(&) Zfz ZIOgEzm exp(&;).

It follows that

EZ1,-~ Zr €XP (Z& — ZlOgEZEy) exp(fi))

s=1 s=1

T T
=Bz zpexp () G- log ;) exp(&;))

s=1 s=1
-1 T'-1 N N B

=E, . 2 {exp ( Z & — Z log IEZZ@) exp(fi))EZ(Tyl) exp (& — log EZ<Ty/) exp(gT,))}

= s=1

T'—1 _ T -1 _
=Bz, 2., {exp( Z & — Z logIEZi(y) exp(fi))]

s=1 s=1

min(7,7'—1) min(7,7'—1)
=Eg, .. Fintror 1) [exp ( Z & — Z log]EZim exp(fi))} =1.
s=1 s=1

Here, the last inequality follows from min(7,7” — 1) is a stopping time < 77 — 1 so we can use the induction
hypothesis. O

As a corollary, we have the following counterpart of Chernoff inequality.

Lemma 2 (Martingale Concentration inequality). Consider a sequence of real-valued random functions

&1(81), -+ ,&r(Sr) adapted to the filtration Fy. We have for any 6 € (0,1) and A > 0:

IP{EIn 'y Z& > log( 1/5 iZlogEzm exp(— /\fz)} <

Proof. The proof can be found in Chapter 13 of |Zhang| (2023)). O

Remark 1. One interesting observation is that Lemma[g already ensures that the inequality holds for ar-
bitrary n > 0 with high probability, while in the i.i.d. setting, this may come from an additional uniform
convergence argument. However, we note that the hyper-parameter A > 0 is fized across n > 0, which leads
to subtle difference in application of the above lemma. We present several examples in the next section.



3 Examples with application

3.1 Azuma-Hoeffding’s inequality

Lemma 3 (Martingale Sub-Gaussian inequality). Consider a sequence of random functions

&1(S1), -+ ,&(St), - -+ . Assume each &; is sub-Gaussian with respect to Zi(y):

Ao?
2

logE, ) <AE, & +

for some o; that may depend on S;—1 and Zi(x). Then for all o > 0, with probability at least 1 — 4,

V">0:ZEZ§”&<Z&+(U+ 217010’1) og(2/ )
i=1 i=1

Proof. We set A = y/2log(1/4)/o and apply Lemma O

The main problem is that the o (essentially, the A in Lemma [2| ) has to be fixed for all n. Therefore, one
cannot set o = /> ., 02 to achieve the best bound for all n. Tuning the parameter requires us to pay for
another logT'.

Lemma 4 (Azuma-Hoeffding’s inequality). Consider a sequence of random functions £1(S1), - ,&n(Sn)
with a fized n > 0. If for each i : sup&; — inf & < M; for some constant M;, then with probability at least
1-4,

- - " M?log(1/8
ZEZZ_(’H)& < Zé-z + \/Z’L—l 12 ( / )
=1 i=1

3.2 Freedman’s inequality

Lemma 5 (Freedman’s/Bernstein’s inequality for martingale). Let &, be the martingale difference defined in
Section . If |€]| < R almost surely, then for any n € (0,1/R), with probability at least 1 — 6, for allT' < T,

T T’
S <nY Bl + U0,
t=1 t=1 n

Proof. We define (; = n&, — n°E ) (&])?, which is measurable in S;. Then, we estimate the conditional
log-moment-generating function as follows

Ezgy) exp (Cs)

=B, exp (18] — 1°E 50 (€1)%)

=exp (- 772]EZ§1/> (€)?) ‘E,w exp (n€?)

<exp (= nE, (&)%) - Eyw [1+0€ + (e — 2)(n&)?]
=exp(—n E,w (&)%) 1+ (e— 2)E ;@) (n€l)?]

< exp (= 7°E 0 (€)%) - By exp ((e — 2)(n€l)?)

where we use e < 1+ a + (e — 2)a? for a < 1 in the first inequality (the constraint on 1), and EZW){; =0

because & is a martingale difference sequence. The second inequality uses 14+ a < e® for all a € R. Then,
we can invoke Lemma [2f with {¢;} and XA =1 to obtain that

vn >0, ZQ‘ < log(nl/é) + ZIOgEZW exp(—¢;) < log(1/9).

=1 =1



Plugging ¢; = n&. — anZ(y) (€2)? finishes the proof. O

Example 1. We consider the contextual bandit problem with general function approximation. For f € F,
we define

UL(f) = (f(xt,at) _ rt)Q _ (f*(xt7a,t) _ Tt)??.
We have
EtflUt(f) - Etfl(f(xtv at) - f*(xta at))2a

where on the RHS, there is still randomness for a® and E;—1[] = E[|H!"1,2t]. Then Z'(f) = E,_1U(f) —
U(f) is a martingale difference and >,_, Z'(f) is a martingale sequence. Since the increment |Z*(f)] <1,
we can apply the Freedman’s inequality to get that w.p. at least 1 — 3, for all T < T,

Zzt ) < SEZ ()] + 81oa(1/6).

We can control the second-order bound by
Ei1[Z8(f)?) < 4B, [(f(a',a") = f*(2",a"))?] = 4B, U (),
where it follows that

1 T
5ZEHUf <ZUf ) 4 8log(1/6).
t=1

Since 0 < 23 EeqUNf) < 3p_ UN(f) + 8log(1/6), we have

D (f(atat) —rt)? <> (f(at,at) — rf)? + 8log(1/0).

Taking a union bound over f, we have

T

Y (fratat) =) <Y (f(ahat) — ) + Blog(|F/9),

t=1
holds with probability at least 1 — § for any f € [F],7 € [T].

A distinct feature is that since we do not tune n > 0 for different times step, we can directly invoke the
inequality that holds for all n > 0. Therefore, we do not pay for an additional log T here.

If one wishes to work with the random variables directly, we have the following result.

Lemma 6. Let (&)< be a sequence of random variables adapted to a filtration (F¢)i<r. If0 < & < R
almost surely, then with probability at least 1 — ¢,

Z&_ Z]EZ@,) [&] + 4R log(26Y),

t=1

and

T T
ZEZ@ 6] <2 & +8Rlog(267).

t=1 ) t=1
3.3 MLE Analysis

As an additional example, we consider the model-based case, where we need to estimate the Hellinger distance
between the model and the true model via the likelihood estimator.

Suppose that for each iteration ¢, we will choose a model M* € M (e.g. by UCB or posterior sampling)
and collect a new trajectory by executing xj ~ wpse,ap ~ T, where 7, is either 7y (Q-type) or a uniform



exploration over A (V-type). Then, suppose that we set 8, = 2log(H|Mj|/d), with probability at least
1 -4, for all t € [T], we have

t—1

H
YN E ~ Di(Proai (- | @hoan), Proas= (- | nyan)) < B,

TpTALS AR~ T g
h=1s=1

where § := Zle Bp = 2log(H|M|/0) and 7, is either mps« or Unif(A).

We have the following estimation of the moment-generating function. For any M € M, we have

IP’hM z? i, a
w 3 ve il )
Ph, e (

s la).a3)

Ph o ( a$)/ | Pr,are (25,44 | zf al)

Ty L2, h)

r 1 — Ppoy(zh 4 | 25503) \7
s )
=E|exp (* E log Al “ht A ) E \/lP’h M@ | zp,an) - Py oprx (x| Th, an)
L 2 — Pp o+ (x5 | 27,03) /) TRt AT

1 N N .
[ 1 Ph,]\/f(w; 1 |$iva2) 1
=E|exp (* E log — — ) (1 —-E ~ Dj (Ph Mm( | Thyan), Pr (- | xh,ah)))
L 2 P, (244 L2y, a3) /] EhNTA TR T
-1

TS,y ~Tg

H(lfIE ~ D (Prae (- | @, an), Phoar= (- |93h,ah)))
s=1

We now invoke Lemma [I] to obtain that for any fixed M}, we have

5 P x xs
<P{W>° Zle ATy |T000) M 8)
H‘M}L‘ Py, M ( h+1|xh’ h)

t
+ Zlog (1 - Ezhwst’ahN;st{ (Pt (- | @hyan), P (- | xh:ah))}
s=1

P s xs
{Vt>0 Zlog mM (T | 750 07) < log(H|My|/6)
Ph,ar :r:h+1 | z7,a3)

- Z g an s D (Phas(- | 2y an), Proa= (- | »’Cmah))]
where we use log(l —z) < —z for < 1. With a union bound over M, and then [H]|, we conclude that with
probability at least 1 — §, we have for all ¢ € [T], and for all h € [H],

t t
1 Proe (g g | 23, 05)
D Bz, DR Brar (L 00), Prar- (s an)) < 3 5 log g

s=1 s=1

+ log(H|My|/9).

IEJJh,M(5’3h+1 | 3, a5)
We also save a logT" because we do not need to tune the parameter A\ in Lemma
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