Research note on the martingale concentration inequality

Wei Xiong *

Abstract

We are interested in the martingale concentration inequality used in sequential estimation problem.

Contents

1 Introduction 1
2 Martingale Exponential Inequalities 2
3 Examples with application 3
3.1 Azuma-Hoeffding's inequality 3
3.2 Freedman's inequality 3
3.3 MLE Analysis 4

1 Introduction

This is a research note when reading chapter 13 of Zhang (2023).
In sequential estimation problem, we will observe a sequence of random variables $Z_{t} \in \mathcal{Z}_{t}$, where Z_{t} may depend on the history $\mathcal{S}_{t-1}=\left[Z_{1}, \cdots, Z_{t-1}\right] \in \mathcal{Z}^{t-1}$. We denote the sigma algebra generated by \mathcal{S}_{t} as the filtration \mathcal{F}_{t}. We say a sequence $\left\{\xi_{t}\right\}$ is adapted to the filtration $\left\{\mathcal{F}_{t}\right\}$, if each ξ_{t} is a function of \mathcal{S}_{t}. That is, each ξ_{t} does not depend on the future $\left(Z_{s}, s>t\right)$. This is also referred to as that ξ_{t} is measurable in \mathcal{F}_{t}. The sequence

$$
\xi_{t}^{\prime}\left(\mathcal{S}_{t}\right):=\xi_{t}\left(\mathcal{S}_{t}\right)-\mathbb{E}\left[\xi_{t}\left(\mathcal{S}_{t}\right) \mid \mathcal{F}_{t-1}\right]=\xi_{t}\left(\mathcal{S}_{t}\right)-\mathbb{E}_{Z_{t} \mid \mathcal{S}_{t-1}} \xi_{t}\left(\mathcal{S}_{t}\right),
$$

is referred to as a martingale difference sequence, where we have

$$
\mathbb{E}\left[\xi_{t}^{\prime} \mid \mathcal{F}_{t-1}\right]=0 .
$$

The sum of such a martingale difference sequence

$$
\sum_{s=1}^{t} \xi_{s}^{\prime}=\sum_{s=1}^{t} \xi_{s}^{\prime}\left(\mathcal{S}_{s}\right)
$$

is referred to as a martingale. In what follows, we further assume that $\mathcal{Z}=\mathcal{Z}^{(x)} \times \mathcal{Z}^{(y)}$ and $Z_{t}=\left(Z_{t}^{(x)}, Z_{t}^{(y)}\right)$. For instance, the $Z_{t}^{(x)}$ may be regarded as the context of the contextual bandit in iteration t, while $Z_{t}^{(y)}$ is the random reward.

[^0]
2 Martingale Exponential Inequalities

For notation simplicity, we use

$$
\mathbb{E}_{Z_{t}^{(y)}}[\cdot]:=\mathbb{E}_{Z_{t}^{(y)} \mid Z_{t}^{(x)}, \mathcal{S}_{t-1}}[\cdot]
$$

Lemma 1 (Martingale Exponential Inequalities). Consider a sequence of real-valued random functions $\xi_{1}\left(\mathcal{S}_{1}\right), \cdots, \xi_{T}\left(\mathcal{S}_{T}\right)$. Let $\tau \leq T$ be a stopping time so that $\mathbb{I}(t \leq \tau)$ is measurable in \mathcal{S}_{t}. We have

$$
\mathbb{E}_{\mathcal{S}_{T}} \exp \left(\sum_{s=1}^{\tau} \xi_{i}-\sum_{s=1}^{\tau} \log \mathbb{E}_{Z_{i}^{(y)}} \exp \left(\xi_{i}\right)\right)=1
$$

where $Z_{t}=\left(Z_{t}^{(x)}, Z_{t}^{(y)}\right)$ and $\mathcal{Z}_{t}=\left(Z_{1}, \cdots, Z_{t}\right)$.

Proof. We prove by induction on T^{\prime}. When $T^{\prime}=0$, the inequality is trivial. Now suppose that it holds for $T^{\prime}-1$ for some $T^{\prime} \geq 1$. We let $\widetilde{\xi}_{i}=\xi_{i} \mathbb{I}(i \leq \tau)$ which is measurable in \mathcal{S}_{i}. We have

$$
\sum_{s=1}^{\tau} \xi_{i}-\sum_{s=1}^{\tau} \log \mathbb{E}_{Z_{i}^{(y)}} \exp \left(\xi_{i}\right)=\sum_{s=1}^{\tau} \widetilde{\xi}_{i}-\sum_{s=1}^{\tau} \log \mathbb{E}_{Z_{i}^{(y)}} \exp \left(\widetilde{\xi}_{i}\right)
$$

It follows that

$$
\begin{aligned}
& \mathbb{E}_{Z_{1}, \cdots, Z_{T^{\prime}}} \exp \left(\sum_{s=1}^{\tau} \xi_{i}-\sum_{s=1}^{\tau} \log \mathbb{E}_{Z_{i}^{(y)}} \exp \left(\xi_{i}\right)\right) \\
& =\mathbb{E}_{Z_{1}, \cdots, Z_{T^{\prime}}} \exp \left(\sum_{s=1}^{T^{\prime}} \widetilde{\xi}_{i}-\sum_{s=1}^{T^{\prime}} \log \mathbb{E}_{Z_{i}^{(y)}} \exp \left(\widetilde{\xi}_{i}\right)\right) \\
& =\mathbb{E}_{Z_{1}, \cdots, Z_{T^{\prime}}^{(x)}}\left[\exp \left(\sum_{s=1}^{T^{\prime}-1} \widetilde{\xi}_{i}-\sum_{s=1}^{T^{\prime}-1} \log \mathbb{E}_{Z_{i}^{(y)}} \exp \left(\widetilde{\xi}_{i}\right)\right) \mathbb{E}_{Z_{T^{\prime}}^{(y)}} \exp \left(\widetilde{\xi}_{T^{\prime}}-\log \mathbb{E}_{Z_{T^{\prime}}^{(y)}} \exp \left(\widetilde{\xi}_{T^{\prime}}\right)\right)\right] \\
& =\mathbb{E}_{Z_{1}, \cdots, Z_{T^{\prime}-1}}\left[\exp \left(\sum_{s=1}^{T^{\prime}-1} \widetilde{\xi}_{i}-\sum_{s=1}^{T^{\prime}-1} \log \mathbb{E}_{Z_{i}^{(y)}} \exp \left(\widetilde{\xi}_{i}\right)\right)\right] \\
& =\mathbb{E}_{Z_{1}, \cdots, Z_{\min \left(\tau, T^{\prime}-1\right)}}\left[\exp \left(\sum_{s=1}^{\min \left(\tau, T^{\prime}-1\right)} \xi_{i}-\sum_{s=1}^{\min \left(\tau, T^{\prime}-1\right)} \log \mathbb{E}_{Z_{i}^{(y)}} \exp \left(\xi_{i}\right)\right)\right]=1 .
\end{aligned}
$$

Here, the last inequality follows from $\min \left(\tau, T^{\prime}-1\right)$ is a stopping time $\leq T^{\prime}-1$ so we can use the induction hypothesis.

As a corollary, we have the following counterpart of Chernoff inequality.
Lemma 2 (Martingale Concentration inequality). Consider a sequence of real-valued random functions $\xi_{1}\left(\mathcal{S}_{1}\right), \cdots, \xi_{T}\left(\mathcal{S}_{T}\right)$ adapted to the filtration \mathcal{F}_{t}. We have for any $\delta \in(0,1)$ and $\lambda>0$:

$$
\mathbb{P}\left[\exists n>0:-\sum_{i=1}^{n} \xi_{i} \geq \frac{\log (1 / \delta)}{\lambda}+\frac{1}{\lambda} \sum_{i=1}^{n} \log \mathbb{E}_{Z_{i}^{(y)}} \exp \left(-\lambda \xi_{i}\right)\right] \leq \delta
$$

Proof. The proof can be found in Chapter 13 of Zhang (2023).
Remark 1. One interesting observation is that Lemma 2 already ensures that the inequality holds for arbitrary $n>0$ with high probability, while in the i.i.d. setting, this may come from an additional uniform convergence argument. However, we note that the hyper-parameter $\lambda>0$ is fixed across $n>0$, which leads to subtle difference in application of the above lemma. We present several examples in the next section.

3 Examples with application

3.1 Azuma-Hoeffding's inequality

Lemma 3 (Martingale Sub-Gaussian inequality). Consider a sequence of random functions $\xi_{1}\left(\mathcal{S}_{1}\right), \cdots, \xi_{t}\left(\mathcal{S}_{t}\right), \cdots$. Assume each ξ_{i} is sub-Gaussian with respect to $Z_{i}^{(y)}$:

$$
\log \mathbb{E}_{Z_{i}^{(y)}} \leq \lambda \mathbb{E}_{Z_{i}^{(y)}} \xi_{i}+\frac{\lambda^{2} \sigma_{i}^{2}}{2}
$$

for some σ_{i} that may depend on \mathcal{S}_{i-1} and $Z_{i}^{(x)}$. Then for all $\sigma>0$, with probability at least $1-\delta$,

$$
\forall n>0: \sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(y)}} \xi_{i}<\sum_{i=1}^{n} \xi_{i}+\left(\sigma+\frac{\sum_{i=1}^{n} \sigma_{i}^{2}}{\sigma}\right) \sqrt{\frac{\log (1 / \delta)}{2}}
$$

Proof. We set $\lambda=\sqrt{2 \log (1 / \delta)} / \sigma$ and apply Lemma 2
The main problem is that the σ (essentially, the λ in Lemma 2) has to be fixed for all n. Therefore, one cannot set $\sigma=\sqrt{\sum_{i=1}^{n} \sigma_{i}^{2}}$ to achieve the best bound for all n. Tuning the parameter requires us to pay for another $\log T$.
Lemma 4 (Azuma-Hoeffding's inequality). Consider a sequence of random functions $\xi_{1}\left(\mathcal{S}_{1}\right), \cdots, \xi_{n}\left(\mathcal{S}_{n}\right)$ with a fixed $n>0$. If for each $i: \sup \xi_{i}-\inf \xi_{i} \leq M_{i}$ for some constant M_{i}, then with probability at least $1-\delta$,

$$
\sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(y)}} \xi_{i}<\sum_{i=1}^{n} \xi_{i}+\sqrt{\frac{\sum_{i=1}^{n} M_{i}^{2} \log (1 / \delta)}{2}}
$$

3.2 Freedman's inequality

Lemma 5 (Freedman's/Bernstein's inequality for martingale). Let ξ_{t}^{\prime} be the martingale difference defined in Section 1. If $\left|\xi_{t}^{\prime}\right| \leq R$ almost surely, then for any $\eta \in(0,1 / R)$, with probability at least $1-\delta$, for all $T^{\prime} \leq T$,

$$
\sum_{t=1}^{T^{\prime}} \xi_{t}^{\prime} \leq \eta \sum_{t=1}^{T^{\prime}} \mathbb{E}_{t-1}\left[\left(\xi_{t}^{\prime}\right)^{2}\right]+\frac{\log (1 / \delta)}{\eta}
$$

Proof. We define $\zeta_{s}=\eta \xi_{s}^{\prime}-\eta^{2} \mathbb{E}_{Z_{s}^{(y)}}\left(\xi_{s}^{\prime}\right)^{2}$, which is measurable in \mathcal{S}_{s}. Then, we estimate the conditional log-moment-generating function as follows

$$
\begin{aligned}
& \mathbb{E}_{Z_{s}^{(y)}} \exp \left(\zeta_{s}\right) \\
& =\mathbb{E}_{Z_{s}^{(y)}} \exp \left(\eta \xi_{s}^{\prime}-\eta^{2} \mathbb{E}_{Z_{s}^{(y)}}\left(\xi_{s}^{\prime}\right)^{2}\right) \\
& =\exp \left(-\eta^{2} \mathbb{E}_{Z_{s}^{(y)}}\left(\xi_{s}^{\prime}\right)^{2}\right) \cdot \mathbb{E}_{Z_{s}^{(y)}} \exp \left(\eta \xi_{s}^{\prime}\right) \\
& \leq \exp \left(-\eta^{2} \mathbb{E}_{Z_{s}^{(y)}}\left(\xi_{s}^{\prime}\right)^{2}\right) \cdot \mathbb{E}_{Z_{s}^{(y)}}\left[1+\eta \xi_{s}^{\prime}+(e-2)\left(\eta \xi_{s}^{\prime}\right)^{2}\right] \\
& =\exp \left(-\eta^{2} \mathbb{E}_{Z_{s}^{(y)}}\left(\xi_{s}^{\prime}\right)^{2}\right) \cdot\left[1+(e-2) \mathbb{E}_{Z_{s}^{(y)}}\left(\eta \xi_{s}^{\prime}\right)^{2}\right] \\
& \leq \exp \left(-\eta^{2} \mathbb{E}_{Z_{s}^{(y)}}\left(\xi_{s}^{\prime}\right)^{2}\right) \cdot \mathbb{E}_{Z_{s}^{(y)}} \exp \left((e-2)\left(\eta \xi_{s}^{\prime}\right)^{2}\right) \\
& \leq e^{0}=1
\end{aligned}
$$

where we use $e^{a} \leq 1+a+(e-2) a^{2}$ for $a \leq 1$ in the first inequality (the constraint on η), and $\mathbb{E}_{Z_{s}^{(y)}} \xi_{s}^{\prime}=0$ because ξ_{s}^{\prime} is a martingale difference sequence. The second inequality uses $1+a \leq e^{a}$ for all $a \in \mathbb{R}$. Then, we can invoke Lemma 2 with $\left\{\zeta_{t}\right\}$ and $\lambda=1$ to obtain that

$$
\forall n>0, \sum_{i=1}^{n} \zeta_{i}<\frac{\log (1 / \delta)}{\eta}+\sum_{i=1}^{n} \log \mathbb{E}_{Z_{i}^{(y)}} \exp \left(-\zeta_{i}\right) \leq \log (1 / \delta)
$$

Plugging $\zeta_{i}=\eta \xi_{i}^{\prime}-\eta^{2} \mathbb{E}_{Z_{s}^{(y)}}\left(\xi_{s}^{\prime}\right)^{2}$ finishes the proof.
Example 1. We consider the contextual bandit problem with general function approximation. For $f \in \mathcal{F}$, we define

$$
U^{t}(f)=\left(f\left(x^{t}, a^{t}\right)-r^{t}\right)^{2}-\left(f^{*}\left(x^{t}, a^{t}\right)-r^{t}\right)^{2}
$$

We have

$$
\mathbb{E}_{t-1} U^{t}(f)=\mathbb{E}_{t-1}\left(f\left(x^{t}, a^{t}\right)-f^{*}\left(x^{t}, a^{t}\right)\right)^{2}
$$

where on the $R H S$, there is still randomness for a^{t} and $\mathbb{E}_{t-1}[\cdot]=\mathbb{E}\left[\cdot \mid \mathcal{H}^{t-1}, x^{t}\right]$. Then $Z^{t}(f)=\mathbb{E}_{t-1} U^{t}(f)-$ $U^{t}(f)$ is a martingale difference and $\sum_{t=1}^{\tau} Z^{t}(f)$ is a martingale sequence. Since the increment $\left|Z^{t}(f)\right| \leq 1$, we can apply the Freedman's inequality to get that w.p. at least $1-\delta$, for all $\tau \leq T$,

$$
\sum_{t=1}^{\tau} Z^{t}(f) \leq \frac{1}{8} \mathbb{E}_{t-1}\left[Z^{t}(f)^{2}\right]+8 \log (1 / \delta)
$$

We can control the second-order bound by

$$
\mathbb{E}_{t-1}\left[Z^{t}(f)^{2}\right] \leq 4 \mathbb{E}_{t-1}\left[\left(f\left(x^{t}, a^{t}\right)-f^{*}\left(x^{t}, a^{t}\right)\right)^{2}\right]=4 \mathbb{E}_{t-1} U^{t}(f)
$$

where it follows that

$$
\frac{1}{2} \sum_{t=1}^{\tau} \mathbb{E}_{t-1} U^{t}(f) \leq \sum_{t=1}^{\tau} U^{t}(f)+8 \log (1 / \delta)
$$

Since $0 \leq \frac{1}{2} \sum_{t=1}^{\tau} \mathbb{E}_{t-1} U^{t}(f) \leq \sum_{t=1}^{\tau} U^{t}(f)+8 \log (1 / \delta)$, we have

$$
\sum_{t=1}^{\tau}\left(f^{*}\left(x^{t}, a^{t}\right)-r^{t}\right)^{2} \leq \sum_{t=1}^{\tau}\left(f\left(x^{t}, a^{t}\right)-r^{t}\right)^{2}+8 \log (1 / \delta)
$$

Taking a union bound over f, we have

$$
\sum_{t=1}^{\tau}\left(f^{*}\left(x^{t}, a^{t}\right)-r^{t}\right)^{2} \leq \sum_{t=1}^{\tau}\left(f\left(x^{t}, a^{t}\right)-r^{t}\right)^{2}+8 \log (|\mathcal{F}| / \delta)
$$

holds with probability at least $1-\delta$ for any $f \in[F], \tau \in[T]$.
A distinct feature is that since we do not tune $\eta>0$ for different times step, we can directly invoke the inequality that holds for all $n>0$. Therefore, we do not pay for an additional $\log T$ here.

If one wishes to work with the random variables directly, we have the following result.
Lemma 6. Let $\left(\xi_{t}\right)_{t \leq T}$ be a sequence of random variables adapted to a filtration $\left(\mathcal{F}_{t}\right)_{t \leq T}$. If $0 \leq \xi_{t} \leq R$ almost surely, then with probability at least $1-\delta$,

$$
\sum_{t=1}^{T} \xi_{t} \leq \frac{3}{2} \sum_{t=1}^{T} \mathbb{E}_{Z_{t}^{(y)}}\left[\xi_{t}\right]+4 R \log \left(2 \delta^{-1}\right)
$$

and

$$
\sum_{t=1}^{T} \mathbb{E}_{Z_{t}^{(y)}}\left[\xi_{t}\right] \leq 2 \sum_{t=1}^{T} \xi_{t}+8 R \log \left(2 \delta^{-1}\right)
$$

3.3 MLE Analysis

As an additional example, we consider the model-based case, where we need to estimate the Hellinger distance between the model and the true model via the likelihood estimator.

Suppose that for each iteration t, we will choose a model $M^{t} \in \mathcal{M}$ (e.g. by UCB or posterior sampling) and collect a new trajectory by executing $x_{h} \sim \pi_{M^{t}}, a_{h} \sim \widetilde{\pi}_{t}$, where $\widetilde{\pi}_{t}$ is either $\pi_{M^{t}}$ (Q-type) or a uniform
exploration over \mathcal{A} (V-type). Then, suppose that we set $\beta_{h}=2 \log \left(H\left|\mathcal{M}_{h}\right| / \delta\right)$, with probability at least $1-\delta$, for all $t \in[T]$, we have

$$
\sum_{h=1}^{H} \sum_{s=1}^{t-1} \mathbb{E}_{x_{h} \sim \pi_{M^{s}}, a_{h} \sim \widetilde{\pi}_{s}} D_{\mathrm{H}}^{2}\left(\mathbb{P}_{h, M}\left(\cdot \mid x_{h}, a_{h}\right), \mathbb{P}_{h, M^{*}}\left(\cdot \mid x_{h}, a_{h}\right)\right) \leq \beta
$$

where $\beta:=\sum_{h=1}^{H} \beta_{h}=2 \log (H|\mathcal{M}| / \delta)$ and $\widetilde{\pi}_{s}$ is either $\pi_{M^{s}}$ or $\operatorname{Unif}(\mathcal{A})$.
We have the following estimation of the moment-generating function. For any $M \in \mathcal{M}$, we have

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(\frac{1}{2} \sum_{s=1}^{t} \log \frac{\mathbb{P}_{h, M}\left(x_{h+1}^{s} \mid x_{h}^{s}, a_{h}^{s}\right)}{\mathbb{P}_{h, M^{*}}\left(x_{h+1}^{s} \mid x_{h}^{s}, a_{h}^{s}\right)}\right)\right] \\
& =\mathbb{E}\left[\exp \left(\frac{1}{2} \sum_{s=1}^{t-1} \log \frac{\mathbb{P}_{h, M}\left(x_{h+1}^{s} \mid x_{h}^{s}, a_{h}^{s}\right)}{\mathbb{P}_{h, M^{*}}\left(x_{h+1}^{s} \mid x_{h}^{s}, a_{h}^{s}\right)}\right)\right] \mathbb{E}_{t} \sqrt{\frac{\mathbb{P}_{h, M}\left(x_{h+1}^{s} \mid x_{h}^{t}, a_{h}^{t}\right)}{\mathbb{P}_{h, M^{*}}\left(x_{h+1}^{s} \mid x_{h}^{t}, a_{h}^{t}\right)}} \\
& =\mathbb{E}\left[\exp \left(\frac{1}{2} \sum_{s=1}^{t-1} \log \frac{\mathbb{P}_{h, M}\left(x_{h+1}^{s} \mid x_{h}^{s}, a_{h}^{s}\right)}{\mathbb{P}_{h, M^{*}}\left(x_{h+1}^{s} \mid x_{h}^{s}, a_{h}^{s}\right)}\right)\right] \mathbb{E}_{x_{h} \sim \pi_{M^{t}}, a_{h} \sim \tilde{\pi}_{t}} \int_{x \in \mathcal{S}} \sqrt{\mathbb{P}_{h, M}\left(x \mid x_{h}, a_{h}\right) \cdot \mathbb{P}_{h, M^{*}}\left(x \mid x_{h}, a_{h}\right)} \\
& =\mathbb{E}\left[\exp \left(\frac{1}{2} \sum_{s=1}^{t-1} \log \frac{\mathbb{P}_{h, M}\left(x_{h+1}^{s} \mid x_{h}^{s}, a_{h}^{s}\right)}{\mathbb{P}_{h, M^{*}}\left(x_{h+1}^{s} \mid x_{h}^{s}, a_{h}^{s}\right)}\right)\right]\left(1-\mathbb{E}_{x_{h} \sim \pi_{M^{t}}, a_{h} \sim \widetilde{\pi}_{t}} D_{\mathrm{H}}^{2}\left(\mathbb{P}_{h, M}\left(\cdot \mid x_{h}, a_{h}\right), \mathbb{P}_{h, M^{*}}\left(\cdot \mid x_{h}, a_{h}\right)\right)\right) \\
& =\cdots \\
& =\prod_{s=1}^{t}\left(1-\mathbb{E}_{x_{h} \sim \pi_{M}, a_{h} \sim \widetilde{\pi}_{s}} D_{\mathrm{H}}^{2}\left(\mathbb{P}_{h, M}\left(\cdot \mid x_{h}, a_{h}\right), \mathbb{P}_{h, M^{*}}\left(\cdot \mid x_{h}, a_{h}\right)\right)\right)
\end{aligned}
$$

We now invoke Lemma 1 to obtain that for any fixed M_{h}, we have

$$
\begin{aligned}
& 1-\frac{\delta}{H\left|\mathcal{M}_{h}\right|} \leq \mathbb{P}\left[\forall t>0: \frac{1}{2} \sum_{s=1}^{t} \log \frac{\mathbb{P}_{h, M}\left(x_{h+1}^{s} \mid x_{h}^{s}, a_{h}^{s}\right)}{\mathbb{P}_{h, M^{*}}\left(x_{h+1}^{s} \mid x_{h}^{s}, a_{h}^{s}\right)} \leq \log \left(H\left|\mathcal{M}_{h}\right| / \delta\right)\right. \\
&+\sum_{s=1}^{t} \log \left(1-\mathbb{E}_{x_{h} \sim \pi_{M^{s}}, a_{h} \sim \pi_{s}} D_{\mathrm{H}}^{2}\left(\mathbb{P}_{h, M}\left(\cdot \mid x_{h}, a_{h}\right), \mathbb{P}_{h, M^{*}}\left(\cdot \mid x_{h}, a_{h}\right)\right)\right] \\
& \leq \mathbb{P}\left[\forall t>0: \frac{1}{2} \sum_{s=1}^{t} \log \frac{\mathbb{P}_{h, M}\left(x_{h+1}^{s} \mid x_{h}^{s}, a_{h}^{s}\right)}{\mathbb{P}_{h, M^{*}}\left(x_{h+1}^{s} \mid x_{h}^{s}, a_{h}^{s}\right)} \leq \log \left(H\left|\mathcal{M}_{h}\right| / \delta\right)\right. \\
&\left.-\sum_{s=1}^{t} \mathbb{E}_{x_{h} \sim \pi_{M^{s}}, a_{h} \sim \tilde{\pi}_{s}} D_{\mathrm{H}}^{2}\left(\mathbb{P}_{h, M}\left(\cdot \mid x_{h}, a_{h}\right), \mathbb{P}_{h, M^{*}}\left(\cdot \mid x_{h}, a_{h}\right)\right)\right]
\end{aligned}
$$

where we use $\log (1-x) \leq-x$ for $x \leq 1$. With a union bound over \mathcal{M}_{h} and then $[H]$, we conclude that with probability at least $1-\delta$, we have for all $t \in[T]$, and for all $h \in[H]$,
$\sum_{s=1}^{t} \mathbb{E}_{x_{h} \sim \pi_{M^{s}}, a_{h} \sim \tilde{\pi}_{s}} D_{\mathrm{H}}^{2}\left(\mathbb{P}_{h, M}\left(\cdot \mid x_{h}, a_{h}\right), \mathbb{P}_{h, M^{*}}\left(\cdot \mid x_{h}, a_{h}\right)\right) \leq \sum_{s=1}^{t} \frac{1}{2} \log \frac{\mathbb{P}_{h, M^{*}}\left(x_{h+1}^{s} \mid x_{h}^{s}, a_{h}^{s}\right)}{\mathbb{P}_{h, M}\left(x_{h+1}^{s} \mid x_{h}^{s}, a_{h}^{s}\right)}+\log \left(H\left|\mathcal{M}_{h}\right| / \delta\right)$.

We also save a $\log T$ because we do not need to tune the parameter λ in Lemma 2 ,

References

Tong Zhang. Mathematical analysis of machine learning algorithms. 2023. doi: 10.1017/9781009093057.

[^0]: *Email: wx13@illinois.edu

