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1 Introduction4

We focus on contextual bandit in this note.5

2 Contextual Bandit6

2.1 Problem Formulation7

Definition 1 (Contextual bandit). A contextual bandit problem is a tuple (X ,A, r). Given context8

x ∈ X , we take an action a ∈ A, and observe a reward r ∈ R that can depend on (x, a). The bandit9

game repeats as follows: at each time step t,10

• We observe a context xt ∈ X ;11

• The player chooses one arm at ∈ A;12

• The reward rt is revealed.13

The goal is to maximize the expected cumulative reward:

T∑
t=1

Eat∼πt [rt(at)],

where πt : X → ∆A is a policy. The reward generalization can be either adversarial or stochastic.14

• Stochastic: there exists an unknown value function:

f∗(x, a) = E[r|x, a], f∗(x) = max
a∈A

f(x, a).

• Adversarial: we are given an arbitrary reward sequence {[rt(a) : a ∈ A] : t ∈ [T ]} before hand15

(also referred to as an oblivious adversary).16

1



2.2 Preliminary17

Lemma 1. Given any function U(w), we have

min
p

[Ew∼pU(w) + KL (p∥p0)] = − lnEw∼p0 exp(−U(w)),

where the minimum is achieved by the Gibbs distribution q(w) ∝ p0(w) exp(−U(w)).18

3 EXP4 for Adversarial Contextual Bandit19

We consider the finite-arm setting where A = {1, · · · ,K}. Assume that we are given a random
policy class indexed by w:

G = {p(a|w, x) : w ∈ Ω},

where each p(·|w, x) is a conditional distribution over {1, · · · ,K}. The EXP4 algorithm maintains
a distribution over the policy class, which induces a distribution over A by:

pt(a) = (1 − γ)Ew∼pt−1(w)p(a|w, xt) + γ

K
, (3.1)

where γ > 0 is a parameter controlling exploration. It remains to construct the posterior distribu-20

tion pt(w) over G.21

We start with a prior p0(w). The posterior is constructed by standard online aggregation trick.
For each time step t, we use the following reward estimators:

r̂t(w, xt) = p(at|w, xt)
pt(at)

(rt(at) − b). (3.2)

Then, the posterior is given by

pt(w) =
p0(w) exp

(
η
∑t

i=1 r̂t(w, xt)
)

Ew∼p0(w)p0(w) exp
(
η
∑t

i=1 r̂t(w, xt)
) . (3.3)

The estimator is unbiased for

rt(w, xt) − b =
K∑

a=1
p(a|w, xt)(rt(a) − b),

which relies on the full reward vector at time step t. The parameter b also controls exploration by22

put more penalty on the observed arm and thereby favors arms that are not observed.23

We have the following theoretical guarantee.24

Theorem 1. For any K,T ≥ 0 and any γ ∈ (0, 1], η > 0 and b ≥ 0. Consider any family of policies
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G = {p(a|w, x) : w ∈ Ω} with prior p0(w). Then, we have

E
T∑

t=1
rt (at) ≥ (1 − γ) max

q

[
Ew∼q

T∑
t=1

Ea∼p(·|w,xt)rt(a) − 1
η

KL (q||p0) ,
]

− c(η, b)η
T∑

t=1

K∑
a=1

|rt(a) − b| ,
(3.4)

where the expectation is w.r.t. the randomness of the algorithm,

c(η, b) = ψ (z0) max(b, 1 − b), z0 = max(0, η(1 − b)K/γ),

and ψ(z) = (ez − 1 − z)/z2.25

We have the following corollary.26

Corollary 2. Let η = γ/K and b = 0. Assumes that the uniform random policy belongs to G and
|G| = N < ∞. Let p0(w) be the uniform prior over Ω, then

G∗ − E
T∑

t=1
rt (at) ≤ (e− 1)γG∗ + K lnN

γ
, (3.5)

where the expectation is with respect to the randomness of algorithm, and

G∗ = argmax
w

T∑
t=1

Ea∼p(·|w,xt)[rt(a)].

Remark 1. For Hedge with full feedback, we do not have to explore in order to obtain rewards for27

different arms. This removes the K-dependency in the resulting bound.28

Remark 2. EXP4 tries to find a best policy within a policy class, which can be regarded as a29

policy-based algorithm.30

3.1 Analysis31

Theorem 1. We will first estimate the first-order moment and second-order moment of the reward32

estimator, respectively. Then, we will use the fact that ψ(z) = (ez − 1 − z)/z2 is increasing so we33

can bound ez (which is the likelihood) by 1 + z + ψ(z0)z2 (which have been estimated). We then34

use standard online aggregation analysis trick to finish the proof.35

By Eqn. (3.1), we know that

Ew∼pt−1(w)p(at|w, xt) ≤ pt(at)/(1 − γ). (3.6)
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This implies that

Ew∼pt−1(w)r̂t (w, xt) = Ew∼pt−1(w)p (at | w, xt) [rt (at) − b] /pt (at)

≤ 1
1 − γ

rt (at) − qt (at) b,
(3.7)

where qt(a) = Ew∼pt−1(w)p(a|w, xt)/pt(a). We also have

Ew∼pt−1(w)r̂t (w, xt)2

=Ew∼pt−1(w)p (at | w, xt)2 ((rt (at) − b) /pt (at))2

≤ max(b, 1 − b)Ew∼pt−1(w)p (at | w, xt)
(
|rt (at) − b| /pt (at)2

)
≤max(b, 1 − b)

1 − γ
(|rt (at) − b| /pt (at)) ,

(3.8)

where the first inequality uses p(at|w, xt) ≤ 1 and |rt(at) − b| ≤ max(b, 1 − b); the second inequality
uses Eqn. (3.6). We still need a range estimation for ηr̂t(w, xt):

ηr̂t(w, xt) = η
p(at|w, xt)
pt(at)

(rt(at) − b) ≤ max(0, η(1 − b)K/γ),

as p(at|w, xt)/pt(at) ≥ γ/K. We now define

Wt = Ew∼p0(w) exp(η
t∑

k=1
r̂k(w, xk)).

It follows that
ln Wt

Wt−1
= lnEw∼p0(w)

exp(η∑t
k=1 r̂k(w, xk))
Wt−1

= lnEw∼p0(w)
exp(η∑t−1

k=1 r̂k(w, xk))
Ew∼p0(w) exp(η∑t−1

k=1 r̂k(w, xk))︸ ︷︷ ︸
density of pt−1(w)

exp(ηr̂t(w, xt))

= lnEw∼pt−1(w) exp (ηr̂t (w, xt))

≤ lnEw∼pt−1(w)
[
1 + (ηr̂t (w, xt)) + ψ (z0) (ηr̂t (w, xt))2

]
≤Ew∼pt−1(w) (ηr̂t (w, xt)) + ψ (z0)Ew∼pt−1(w) (ηr̂t (w, xt))2

≤ η

1 − γ
rt (at) − ηqt (at) b+ c(η, b)η2

(1 − γ)
|rt (at) − b|
pt (at)

,

where in the first inequality we uses z = ηr̂t(w, xt) ≤ max(0, η(1 − b)K/γ); the second inequality
uses ln(1+z) ≤ z; and the last inequality uses Eqn. (3.7) and (3.8), with c(η, b) = ψ(z0) max(b, 1−b).
Note W0 = 1. We now sum over t ∈ [T ] to obtain that

lnWT = ln WT

W0
≤ η

1 − γ

T∑
t=1

rt (at) − ηb
T∑

t=1
qt (at) + c(η, b)η2

(1 − γ)

T∑
t=1

|rt (at) − b|
pt (at)

.
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Taking expectation with respect to the randomness of the algorithm, we have

E lnWT = E lnEw∼p0(w) exp
(
η

T∑
t=1

r̂t (w, xt)
)

≤ η

1 − γ
E

T∑
t=1

rt (at) − ηTb+ c(η, b)η2

(1 − γ) E
T∑

t=1

K∑
a=1

|rt(a) − b| .

We now invoke Lemma 1 to derive an lower bound of E lnWT .

E lnEw∼p0(w) exp
(
η

T∑
t=1

r̂t (w, xt)
)

=Emax
q

[
Ew∼qη

T∑
t=1

r̂t (w, xt) − KL (q∥p0)
]

≥ max
q

E
[
Ew∼qη

T∑
t=1

r̂t(w, xt) − KL (q∥p0)
]

= max
q

E
[
Ew∼qη

T∑
t=1

[rt (w, xt) − b] − KL (q∥p0)
]
,

where we use Lemma 1 in the first equality and rt(w, xt) = Ea∼p(·|w,xt)r(a). The desired theorem36

then follows from rearranging terms.37

We now prove the corollary.38

Proof of Corollary 2. With the specified choice of parameters, we now have ηr̂t(w, xt) ≤ 1 and
c(η, b) = e− 2. Note that the uniform random policy belongs to Ω implies that

1
K

T∑
t=1

K∑
a=1

rt(a) ≤ G∗.

With q(w) := I(w = w∗), where w∗ achieves the maximum of G∗, from Theorem 1, we have

E
T∑

t=1
rt (at) ≥ (1 − γ)

[
G∗ − K

γ
lnN

]
− (e− 2)γG∗.

39

4 LinUCB for Stochastic Contextual Bandit40

We consider the stochastic contextual bandit with linear function approximation.41

Definition 2 (Stochastic Linear Contextual Bandit). The reward at each time step is given by

rt(a) = rt(xt, a) = w⊤
∗ ψ(xt, a) + ϵt(xt, a),
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where ψ(·, ·) : X × A → Rd is a known feature map and ϵt(x, a) is a zero-mean random variable.42

In this setting, the number of arms can be either infinite or finite. We remark that the condition43

that |A| is finite can be used to achieve sharper regret bound, known as the finite-action case (Chu44

et al., 2011). Here we focus the UCB-type algorithm presented in Abbasi-Yadkori et al. (2011).45

4.1 Optimism in Face of Uncertainty46

The core design of a UCB-type algorithm is to determine the confidence set such that:47

• Optimism is achieved: the optimal target lies in the confidence set;48

• The confidence set is as sharp as possible.49

In this case, we start with A0 = λI,w0 = b0 = 0. At each iteration step t, after observe context xt,50

• We choose at ∈ argmaxa[w⊤
t−1ψ(xt, a) + βt−1 ∥ψ(xt, a)∥A−1

t−1
];51

• bt = bt−1 + rt(xt, at)ψ(xt, at);52

• At = At−1 + ψ(xt, at)ψ(xt, at)⊤;53

• wt = A−1
t bt.54

The proof employs the following famous self-normalized process concentration bound, which holds55

for all arms (possible infinitely many).56

Lemma 2 (Self-normalized process concentration inequality). Let {(Xt, ϵt)} be a sequence in Rd×R
w.r.t. a filtration {Ft} so that

E[ϵt|Xt,Ft−1] = 0, var[ϵt|Xt,Ft−1] ≤ σ2

. Assume also that |ϵt| ≤ M . Let Λ0 be a positive definite matrix, and

Λt = Λ0 +
t∑

s=1
XsX

⊤
s .

Then, for any δ > 0, with probability at least 1 − δ, for all t ≥ 0:∥∥∥∥∥
t∑

t=1
ϵsXs

∥∥∥∥∥
2

Λ−1
t

≤ 1.3σ2 ln |Λ−1
0 Λt| + 4M2 ln(2/δ).

Lemma 3 (Concentration and Optimism). Assume that rt(xt, at) ∈ [0, 1] and

varrt|xt,at
(rt(xt, at)) ≤ σ2.

Assume further that ∥w∗∥2 ≤ B for some constant B. Then, with probability at least 1 − δ, for all
t ≥ 0, and u ∈ Rd, we have :

|u⊤(wt − w∗)| ≤ βt

√
u⊤A−1

t u,
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where βt =
√
λB + 1.3σ

√
ln |At/λ| + 4

√
ln(2/δ).57

Proof. We apply the self-normalized process concentration inequality to obtain that∥∥∥∥∥
t∑

s=1
ϵs(xs, as)ψ(xs, as)

∥∥∥∥∥
A−1

t

≤ 1.3σ
√

ln |A−1
0 At| + 4

√
ln(2/δ), ∀t.

Then, we can add and subtract u⊤A−1
t

∑t
s=1w

⊤
∗ ψ(xs, as)ψ(xs, as) to obtain that

u⊤ (wt − w∗) = u⊤A−1
t

t∑
s=1

rs (xs, as)ψ (xs, as) − u⊤w∗

= u⊤A−1
t

t∑
s=1

ϵs (xs, as)ψ (xs, as) − λu⊤A−1
t w∗

≤ ∥u∥A−1
t

∥∥∥∥∥
t∑

s=1
ϵs (xs, as)ψ (xs, as)

∥∥∥∥∥
A−1

t

+ λ∥u∥A−1
t

∥w∗∥A−1
t

≤ ∥u∥A−1
t

(
1.3σ

√
ln
(∣∣∣A−1

0 At

∣∣∣)+ 4
√

ln(2/δ)
)

+
√
λ∥u∥A−1

t
∥w∗∥2 .

58

We have the following theoretical result.59

Theorem 3. Assume that rt(xt, at) ∈ [0, 1] and

varrt|xt,at
rt(xt, at) ≤ σ2, ∥w∗∥ ≤ B.

Let µt(x, a) = Eϵt(x,a)rt(x, a) = w⊤
∗ ψ(x, a) and a∗(x) ∈ argmaxa µt(x, a). Then, with probability at

least 1 − δ, for any t ≥ 0, and u ∈ Rd, LinUCB satisfies

E
T∑

t=1
[µt (xt, a∗ (xt)) − µt (xt, at)] ≤ 2.5

√√√√ln |AT /λ|
T∑

t=1
β2

t ,

where βt =
√
λB + 1.3σ

√
ln |At/λ| + 4

√
ln(2/δ).60

Proof. For t ≥ 1, with probability at least 1 − δ, we have

w⊤
∗ ψ (xt, a∗ (xt))

≤w⊤
t−1ψ (xt, a∗ (xt)) + βt−1

√
ψ (xt, a∗ (xt))⊤A−1

t−1ψ (xt, a∗ (xt))

≤w⊤
t−1ψ (xt, at) + βt−1

√
ψ (xt, at)⊤A−1

t−1ψ (xt, at) By optimism.

≤w⊤
∗ ψ (xt, at) + 2βt−1

√
ψ (xt, at)⊤A−1

t−1ψ (xt, at).

The result then follows a careful analysis of the self-normalized process. Since w⊤
∗ ψ(xt, a) ∈ [0, 1],
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we can refined the regret bound by

w⊤
∗ ψ (xt, a∗ (xt)) − w⊤

∗ ψ (xt, at) ≤ 2βt−1

√
min

(
ψ (xt, at)⊤A−1

t−1ψ (xt, at) , 0.25
)
.

By summing over t = 1 to t = T , we have

T∑
t=1

[µt (xt, a∗ (xt)) − µt (xt, at)]

≤2
T∑

t=1
βt−1

√
min

(
ψ (xt, at)⊤A−1

t−1ψ (xt, at) , 0.25
)

≤2

√√√√ T∑
t=1

β2
t

√√√√ T∑
t=1

min
(
ψ (xt, at)⊤A−1

t−1ψ (xt, at) , 0.25
)

≤2

√√√√ T∑
t=1

β2
t

√√√√1.25
T∑

t=1

ψ (xt, at)⊤A−1
t−1ψ (xt, at)

1 + ψ (xt, at)⊤A−1
t−1ψ (xt, at)

.

The proof is completed with the following lemma.61

Lemma 4. Let Σ0 be a d × d symmetric positive definite matrix and {ψ(Xt)} be a sequence of
vectors in Rd. Let Σt = Σ0 +∑t

s=1 ψ(Xs)ψ(Xs)⊤, then

t∑
s=1

ψ (Xs)⊤ Σ−1
s−1ψ (Xs)

1 + ψ (Xs)⊤ Σ−1
s−1ψ (Xs)

≤ ln
∣∣∣Σ−1

0 Σt

∣∣∣ .
5 Weakly Nonlinear UCB with Eluder Coefficient62

Definition 3. Stochastic nonlinear contextual bandit is a contextual bandit problem, where the
reward at each time step t is given by

rt(a) = rt(xt, a) = f∗(xt, a) + ϵt(xt, a),

where ϵt(x, a) is a zero-mean random variable. We assume that f∗(x, a) ∈ F for a known function
class F : X × A → R. We also define

f(x) = max
a∈A

f(x, a).

5.1 Non-linear UCB63

In this section, we still consider a UCB-type algorithm where we maintain a confidence set, also
referred to as a version space, Ft, such that f∗ ∈ Ft with high probability. Then, given xt, the
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algorithm chooses ft by

ft = argmax
f∈Ft−1

f(xt), at ∈ argmax
a

ft(xt, a).

As a special case, we consider the linear setting where F = {fw(x, a) = w⊤ψ(x, a) : w ∈ Rd}. Let

Ft = {fw(·) :
t∑

s=1
(w⊤ψ(xs, as)−rs(xs, as))2+λ ∥w∥2

2 ≤ inf
w0

t∑
s=1

(w⊤
0 ψ(xs, as)−rs(xs, as))2+λ ∥w0∥2

2+β2
t }.

Then, we have
Ft−1 = {fw(x, a) : ∥w − wt−1∥At−1

≤ βt−1,

and
max

f∈Ft−1
f (xt, a) = w⊤

t−1ψ (xt, a) + βt−1 ∥ψ (xt, a)∥A−1
t−1

,

where wt−1 = argmaxw′
∑t−1

s=1((w′)⊤ψ(xs, as) − rs(xs, as))2 + λ ∥w′∥2
2.64

Intuitively, the version space Ft contains functions that fit well on the historical dataset St =65

{(xs, as, rs)}t
s=1 and we expect that they perform well on the unseen sample at iteration t + 1,66

which corresponds to the out-of-sample error. To analyze the algorithm, we need some structural67

information to ensure certain good generalization property.68

Definition 4 (Eluder Coefficient). Given a function class F , its Eluder coefficient EC(ϵ,F , T ) is
defined to be the smallest number d so that for any sequence {(xt, at)}T

t=1 and {ft}T
t=1 ∈ F :

T∑
t=2

[ft(xt, at) − f∗(xt, at)] ≤

√√√√d T∑
t=2

(
ϵ+

t−1∑
s=1

|ft(xs, as) − f∗(xs, as)|2
)
.

Theorem 4. Assume that ϵt is conditioned zero-mean sub-Gaussian noise: for all λ ∈ R,

lnE[eλϵt |xt,Ft−1] ≤ λ2

2 σ
2.

If we define

f̂t = argmin
f∈F

t∑
s=1

(f(xs, as) − rs)2 ,

and

Ft =
{
f ∈ F :

t∑
s=1

(
f(xs, as) − f̂(xs, as)

)2
≤ β2

t

}
,

where
β2

t = inf
ϵ>0

[9ϵt(σ + 2ϵ) + 12σ2 ln (2N(ϵ,F , ∥·∥∞) /δ].
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Then with probability at least 1 − δ:

T∑
t=2

[f∗ (xt) − f∗ (xt, at)] ≤

√√√√EC(ϵ,F , T )
(
ϵT + 4

T∑
t=2

β2
t−1

)
.

Proof. We have
f∗ (xt) − f∗ (xt, at)

=f∗ (xt) − ft (xt) + ft (xt, at) − f∗ (xt, at)
≤ft (xt, at) − f∗ (xt, at) ,

where we use ft(xt) = ft(xt, at) as at is greedy with respect to ft and the inequality is due to
optimism of ft. It follows that

T∑
t=2

[f∗ (xt) − f∗ (xt, at)]

≤
T∑

t=2
[ft (xt, at) − f∗ (xt, at)]

≤

√√√√EC(ϵ,F , T )
T∑

t=2

(
ϵ+

t−1∑
s=1

|ft (xs, as) − f∗ (xs, as)|2
)

≤

√√√√EC(ϵ,F , T )
(
ϵT + 4

T∑
t=2

β2
t−1

)
,

where the last inequality follows from

t−1∑
s=1

|ft (xs, as) − f∗ (xs, as)|2

≤4
t−1∑
s=1

[∣∣∣ft (xs, as) − f̂t−1 (xs, as)
∣∣∣2 +

∣∣∣f∗ (xs, as) − f̂t−1 (xs, as)
∣∣∣2] ≤ 4β2

t−1.

as ft, f∗ ∈ Ft. It remains to determine the value of β2
t and to show that the sequence ensures69

optimism. This follows from standard ridge regression analysis and we omit it here.70

5.2 Estimating Eluder Coefficient71

Lemma 5. Consider a RKHS H with feature representation f(x, a) = w · ψ(x, a) for all f ∈ H
and ∥f∥H = ∥w∥2. Assume that ∥f − f∗∥H ≤ B for all f ∈ F ⊂ H and ψ(x, a) = [ψj(x, a)]∞j=1.
Given any ϵ′ > 0, we also denote

d(ϵ′) = min

|S| : sup
x,a

∑
j /∈S

(ψj(x, a))2 ≤ ϵ′

 ,
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and ∥ψ(x, a)∥2 ≤ B′. If |f − f∗| ≤ M for all f ∈ F , then we have

EC(ϵ,F , T ) ≤ (1 + ϵ−1)d(ϵB−2) ln
(

1 + T (BB′)2

d(ϵB−2)ϵ

)
. (5.1)

In particular, if H is d-dimensional for a finite d, then we have

EC(M2,F , T ) ≤ 2d ln
(
1 + 4T (BB′/M)2/d

)
.
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