Non-linear Contextual Bandit

August 7, 2022

1 Introduction

We focus on contextual bandit in this note.

2 Contextual Bandit

2.1 Problem Formulation

Definition 1 (Contextual bandit). A contextual bandit problem is a tuple ($\mathcal{X}, \mathcal{A}, r)$. Given context $x \in \mathcal{X}$, we take an action $a \in \mathcal{A}$, and observe a reward $r \in \mathbb{R}$ that can depend on (x, a). The bandit game repeats as follows: at each time step t,

- We observe a context $x_{t} \in \mathcal{X}$;
- The player chooses one arm $a_{t} \in \mathcal{A}$;
- The reward r_{t} is revealed.

The goal is to maximize the expected cumulative reward:

$$
\sum_{t=1}^{T} \mathbb{E}_{a_{t} \sim \pi_{t}}\left[r_{t}\left(a_{t}\right)\right],
$$

where $\pi_{t}: \mathcal{X} \rightarrow \Delta_{\mathcal{A}}$ is a policy. The reward generalization can be either adversarial or stochastic.

- Stochastic: there exists an unknown value function:

$$
f_{*}(x, a)=\mathbb{E}[r \mid x, a], \quad f_{*}(x)=\max _{a \in \mathcal{A}} f(x, a) .
$$

- Adversarial: we are given an arbitrary reward sequence $\left\{\left[r_{t}(a): a \in \mathcal{A}\right]: t \in[T]\right\}$ before hand (also referred to as an oblivious adversary).
where $\gamma>0$ is a parameter controlling exploration. It remains to construct the posterior distribution $p_{t}(w)$ over \mathcal{G}.

We start with a prior $p_{0}(w)$. The posterior is constructed by standard online aggregation trick. For each time step t, we use the following reward estimators:

$$
\begin{equation*}
\hat{r}_{t}\left(w, x_{t}\right)=\frac{p\left(a_{t} \mid w, x_{t}\right)}{p_{t}\left(a_{t}\right)}\left(r_{t}\left(a_{t}\right)-b\right) . \tag{3.2}
\end{equation*}
$$

Then, the posterior is given by

$$
\begin{equation*}
p_{t}(w)=\frac{p_{0}(w) \exp \left(\eta \sum_{i=1}^{t} \hat{r}_{t}\left(w, x_{t}\right)\right)}{\mathbb{E}_{w \sim p_{0}(w)} p_{0}(w) \exp \left(\eta \sum_{i=1}^{t} \hat{r}_{t}\left(w, x_{t}\right)\right)} . \tag{3.3}
\end{equation*}
$$

The estimator is unbiased for

$$
r_{t}\left(w, x_{t}\right)-b=\sum_{a=1}^{K} p\left(a \mid w, x_{t}\right)\left(r_{t}(a)-b\right),
$$

which relies on the full reward vector at time step t. The parameter b also controls exploration by put more penalty on the observed arm and thereby favors arms that are not observed.

We have the following theoretical guarantee.
Theorem 1. For any $K, T \geq 0$ and any $\gamma \in(0,1], \eta>0$ and $b \geq 0$. Consider any family of policies
$\mathcal{G}=\{p(a \mid w, x): w \in \Omega\}$ with prior $p_{0}(w)$. Then, we have

$$
\begin{align*}
\mathbb{E} \sum_{t=1}^{T} r_{t}\left(a_{t}\right) & \geq(1-\gamma) \max _{q}\left[\mathbb{E}_{w \sim q} \sum_{t=1}^{T} \mathbb{E}_{a \sim p\left(\cdot \mid w, x_{t}\right)} r_{t}(a)-\frac{1}{\eta} \mathrm{KL}\left(q| | p_{0}\right),\right] \tag{3.4}\\
& -c(\eta, b) \eta \sum_{t=1}^{T} \sum_{a=1}^{K}\left|r_{t}(a)-b\right|
\end{align*}
$$

where the expectation is w.r.t. the randomness of the algorithm,

$$
c(\eta, b)=\psi\left(z_{0}\right) \max (b, 1-b), \quad z_{0}=\max (0, \eta(1-b) K / \gamma),
$$

and $\psi(z)=\left(e^{z}-1-z\right) / z^{2}$.
We have the following corollary.
Corollary 2. Let $\eta=\gamma / K$ and $b=0$. Assumes that the uniform random policy belongs to \mathcal{G} and $|\mathcal{G}|=N<\infty$. Let $p_{0}(w)$ be the uniform prior over Ω, then

$$
\begin{equation*}
G_{*}-\mathbb{E} \sum_{t=1}^{T} r_{t}\left(a_{t}\right) \leq(e-1) \gamma G_{*}+\frac{K \ln N}{\gamma}, \tag{3.5}
\end{equation*}
$$

where the expectation is with respect to the randomness of algorithm, and

$$
G_{*}=\underset{w}{\operatorname{argmax}} \sum_{t=1}^{T} \mathbb{E}_{a \sim p\left(\cdot \mid w, x_{t}\right)}\left[r_{t}(a)\right] .
$$

Remark 1. For Hedge with full feedback, we do not have to explore in order to obtain rewards for different arms. This removes the K-dependency in the resulting bound.

Remark 2. EXP4 tries to find a best policy within a policy class, which can be regarded as a policy-based algorithm.

3.1 Analysis

Theorem 1. We will first estimate the first-order moment and second-order moment of the reward estimator, respectively. Then, we will use the fact that $\psi(z)=\left(e^{z}-1-z\right) / z^{2}$ is increasing so we can bound e^{z} (which is the likelihood) by $1+z+\psi\left(z_{0}\right) z^{2}$ (which have been estimated). We then use standard online aggregation analysis trick to finish the proof.

By Eqn. (3.1), we know that

$$
\begin{equation*}
\mathbb{E}_{w \sim p_{t-1}(w)} p\left(a_{t} \mid w, x_{t}\right) \leq p_{t}\left(a_{t}\right) /(1-\gamma) . \tag{3.6}
\end{equation*}
$$

This implies that

$$
\begin{align*}
\mathbb{E}_{w \sim p_{t-1}(w)} \hat{r}_{t}\left(w, x_{t}\right) & =\mathbb{E}_{w \sim p_{t-1}(w)} p\left(a_{t} \mid w, x_{t}\right)\left[r_{t}\left(a_{t}\right)-b\right] / p_{t}\left(a_{t}\right) \\
& \leq \frac{1}{1-\gamma} r_{t}\left(a_{t}\right)-q_{t}\left(a_{t}\right) b, \tag{3.7}
\end{align*}
$$

where $q_{t}(a)=\mathbb{E}_{w \sim p_{t-1}(w)} p\left(a \mid w, x_{t}\right) / p_{t}(a)$. We also have

$$
\begin{align*}
& \mathbb{E}_{w \sim p_{t-1}(w)} \hat{r}_{t}\left(w, x_{t}\right)^{2} \\
= & \mathbb{E}_{w \sim p_{t-1}(w)} p\left(a_{t} \mid w, x_{t}\right)^{2}\left(\left(r_{t}\left(a_{t}\right)-b\right) / p_{t}\left(a_{t}\right)\right)^{2} \\
\leq & \max (b, 1-b) \mathbb{E}_{w \sim p_{t-1}(w)} p\left(a_{t} \mid w, x_{t}\right)\left(\left|r_{t}\left(a_{t}\right)-b\right| / p_{t}\left(a_{t}\right)^{2}\right) \tag{3.8}\\
\leq & \frac{\max (b, 1-b)}{1-\gamma}\left(\left|r_{t}\left(a_{t}\right)-b\right| / p_{t}\left(a_{t}\right)\right),
\end{align*}
$$

where the first inequality uses $p\left(a_{t} \mid w, x_{t}\right) \leq 1$ and $\left|r_{t}\left(a_{t}\right)-b\right| \leq \max (b, 1-b)$; the second inequality uses Eqn. (3.6). We still need a range estimation for $\eta \hat{r}_{t}\left(w, x_{t}\right)$:

$$
\eta \hat{r}_{t}\left(w, x_{t}\right)=\eta \frac{p\left(a_{t} \mid w, x_{t}\right)}{p_{t}\left(a_{t}\right)}\left(r_{t}\left(a_{t}\right)-b\right) \leq \max (0, \eta(1-b) K / \gamma),
$$

as $p\left(a_{t} \mid w, x_{t}\right) / p_{t}\left(a_{t}\right) \geq \gamma / K$. We now define

$$
W_{t}=\mathbb{E}_{w \sim p_{0}(w)} \exp \left(\eta \sum_{k=1}^{t} \hat{r}_{k}\left(w, x_{k}\right)\right) .
$$

It follows that

$$
\begin{aligned}
& \ln \frac{W_{t}}{W_{t-1}}=\ln \mathbb{E}_{w \sim p_{0}(w)} \frac{\exp \left(\eta \sum_{k=1}^{t} \hat{r}_{k}\left(w, x_{k}\right)\right)}{W_{t-1}} \\
= & \ln \mathbb{E}_{w \sim p_{0}(w)} \underbrace{}_{\text {density of } p_{t-1}(w)} \frac{\exp \left(\eta \sum_{k=1}^{t-1} \hat{r}_{k}\left(w, x_{k}\right)\right)}{\mathbb{E}_{w \sim p_{0}(w)} \exp \left(\eta \sum_{k=1}^{t-1} \hat{r}_{k}\left(w, x_{k}\right)\right)} \\
= & \ln \mathbb{E}_{w \sim p_{t-1}(w)} \exp \left(\eta \hat{r}_{t}\left(w, x_{t}\right)\right) \\
\leq & \ln \mathbb{E}_{w \sim p_{t-1}(w)}\left[1+\left(\eta \hat{r}_{t}\left(w, x_{t}\right)\right)+\psi\left(z_{0}\right)\left(\eta \hat{r}_{t}\left(w, x_{t}\right)\right)^{2}\right] \\
\leq & \mathbb{E}_{w \sim p_{t-1}(w)}\left(\eta \hat{r}_{t}\left(w, x_{t}\right)\right)+\psi\left(z_{0}\right) \mathbb{E}_{w \sim p_{t-1}(w)}\left(\eta \hat{r}_{t}\left(w, x_{t}\right)\right)^{2} \\
\leq & \eta \\
1-\gamma & r_{t}\left(a_{t}\right)-\eta q_{t}\left(a_{t}\right) b+\frac{c(\eta, b) \eta^{2}}{(1-\gamma)} \frac{\left|r_{t}\left(a_{t}\right)-b\right|}{p_{t}\left(a_{t}\right)},
\end{aligned}
$$

where in the first inequality we uses $z=\eta \hat{r}_{t}\left(w, x_{t}\right) \leq \max (0, \eta(1-b) K / \gamma)$; the second inequality uses $\ln (1+z) \leq z$; and the last inequality uses Eqn. (3.7) and (3.8), with $c(\eta, b)=\psi\left(z_{0}\right) \max (b, 1-b)$. Note $W_{0}=1$. We now sum over $t \in[T]$ to obtain that

$$
\ln W_{T}=\ln \frac{W_{T}}{W_{0}} \leq \frac{\eta}{1-\gamma} \sum_{t=1}^{T} r_{t}\left(a_{t}\right)-\eta b \sum_{t=1}^{T} q_{t}\left(a_{t}\right)+\frac{c(\eta, b) \eta^{2}}{(1-\gamma)} \sum_{t=1}^{T} \frac{\left|r_{t}\left(a_{t}\right)-b\right|}{p_{t}\left(a_{t}\right)} .
$$

Taking expectation with respect to the randomness of the algorithm, we have

$$
\begin{aligned}
\mathbb{E} \ln W_{T} & =\mathbb{E} \ln \mathbb{E}_{w \sim p_{0}(w)} \exp \left(\eta \sum_{t=1}^{T} \hat{r}_{t}\left(w, x_{t}\right)\right) \\
& \leq \frac{\eta}{1-\gamma} \mathbb{E} \sum_{t=1}^{T} r_{t}\left(a_{t}\right)-\eta T b+\frac{c(\eta, b) \eta^{2}}{(1-\gamma)} \mathbb{E} \sum_{t=1}^{T} \sum_{a=1}^{K}\left|r_{t}(a)-b\right| .
\end{aligned}
$$

We now invoke Lemma 1 to derive an lower bound of $\mathbb{E} \ln W_{T}$.

$$
\begin{aligned}
& \mathbb{E} \ln \mathbb{E}_{w \sim p_{0}(w)} \exp \left(\eta \sum_{t=1}^{T} \hat{r}_{t}\left(w, x_{t}\right)\right) \\
= & \mathbb{E} \max _{q}\left[\mathbb{E}_{w \sim q} \eta \sum_{t=1}^{T} \hat{r}_{t}\left(w, x_{t}\right)-\operatorname{KL}\left(q \| p_{0}\right)\right] \\
\geq & \max _{q} \mathbb{E}\left[\mathbb{E}_{w \sim q} \eta \sum_{t=1}^{T} \hat{r}_{t}\left(w, x_{t}\right)-\operatorname{KL}\left(q \| p_{0}\right)\right] \\
= & \max _{q} \mathbb{E}\left[\mathbb{E}_{w \sim q} \eta \sum_{t=1}^{T}\left[r_{t}\left(w, x_{t}\right)-b\right]-\operatorname{KL}\left(q \| p_{0}\right)\right],
\end{aligned}
$$

where we use Lemma 1 in the first equality and $r_{t}\left(w, x_{t}\right)=\mathbb{E}_{a \sim p\left(\cdot \mid w, x_{t}\right)} r(a)$. The desired theorem then follows from rearranging terms.

We now prove the corollary.
Proof of Corollary 2. With the specified choice of parameters, we now have $\eta \hat{r}_{t}\left(w, x_{t}\right) \leq 1$ and $c(\eta, b)=e-2$. Note that the uniform random policy belongs to Ω implies that

$$
\frac{1}{K} \sum_{t=1}^{T} \sum_{a=1}^{K} r_{t}(a) \leq G_{*}
$$

With $q(w):=I\left(w=w_{*}\right)$, where w_{*} achieves the maximum of G_{*}, from Theorem 1 , we have

$$
\mathbb{E} \sum_{t=1}^{T} r_{t}\left(a_{t}\right) \geq(1-\gamma)\left[G_{*}-\frac{K}{\gamma} \ln N\right]-(e-2) \gamma G_{*}
$$

4 LinUCB for Stochastic Contextual Bandit

We consider the stochastic contextual bandit with linear function approximation.
Definition 2 (Stochastic Linear Contextual Bandit). The reward at each time step is given by

$$
r_{t}(a)=r_{t}\left(x_{t}, a\right)=w_{*}^{\top} \psi\left(x_{t}, a\right)+\epsilon_{t}\left(x_{t}, a\right),
$$

where $\psi(\cdot, \cdot): \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}^{d}$ is a known feature map and $\epsilon_{t}(x, a)$ is a zero-mean random variable.
In this setting, the number of arms can be either infinite or finite. We remark that the condition that $|\mathcal{A}|$ is finite can be used to achieve sharper regret bound, known as the finite-action case (Chu et al., 2011). Here we focus the UCB-type algorithm presented in Abbasi-Yadkori et al. (2011).

4.1 Optimism in Face of Uncertainty

The core design of a UCB-type algorithm is to determine the confidence set such that:

- Optimism is achieved: the optimal target lies in the confidence set;
- The confidence set is as sharp as possible.

In this case, we start with $A_{0}=\lambda I, w_{0}=b_{0}=0$. At each iteration step t, after observe context x_{t},

- We choose $a_{t} \in \operatorname{argmax}_{a}\left[w_{t-1}^{\top} \psi\left(x_{t}, a\right)+\beta_{t-1}\left\|\psi\left(x_{t}, a\right)\right\|_{A_{t-1}^{-1}}\right] ;$
- $b_{t}=b_{t-1}+r_{t}\left(x_{t}, a_{t}\right) \psi\left(x_{t}, a_{t}\right)$;
- $A_{t}=A_{t-1}+\psi\left(x_{t}, a_{t}\right) \psi\left(x_{t}, a_{t}\right)^{\top} ;$
- $w_{t}=A_{t}^{-1} b_{t}$.

The proof employs the following famous self-normalized process concentration bound, which holds for all arms (possible infinitely many).
Lemma 2 (Self-normalized process concentration inequality). Let $\left\{\left(X_{t}, \epsilon_{t}\right)\right\}$ be a sequence in $\mathbb{R}^{d} \times \mathbb{R}$ w.r.t. a filtration $\left\{\mathcal{F}_{t}\right\}$ so that

$$
\mathbb{E}\left[\epsilon_{t} \mid X_{t}, \mathcal{F}_{t-1}\right]=0, \quad \operatorname{var}\left[\epsilon_{t} \mid X_{t}, \mathcal{F}_{t-1}\right] \leq \sigma^{2}
$$

. Assume also that $\left|\epsilon_{t}\right| \leq M$. Let Λ_{0} be a positive definite matrix, and

$$
\Lambda_{t}=\Lambda_{0}+\sum_{s=1}^{t} X_{s} X_{s}^{\top}
$$

Then, for any $\delta>0$, with probability at least $1-\delta$, for all $t \geq 0$:

$$
\left\|\sum_{t=1}^{t} \epsilon_{s} X_{s}\right\|_{\Lambda_{t}^{-1}}^{2} \leq 1.3 \sigma^{2} \ln \left|\Lambda_{0}^{-1} \Lambda_{t}\right|+4 M^{2} \ln (2 / \delta) .
$$

Lemma 3 (Concentration and Optimism). Assume that $r_{t}\left(x_{t}, a_{t}\right) \in[0,1]$ and

$$
\operatorname{var}_{r_{t} \mid x_{t}, a_{t}}\left(r_{t}\left(x_{t}, a_{t}\right)\right) \leq \sigma^{2}
$$

Assume further that $\left\|w_{*}\right\|_{2} \leq B$ for some constant B. Then, with probability at least $1-\delta$, for all $t \geq 0$, and $u \in \mathbb{R}^{d}$, we have :

$$
\left|u^{\top}\left(w_{t}-w_{*}\right)\right| \leq \beta_{t} \sqrt{u^{\top} A_{t}^{-1} u}
$$

57
where $\beta_{t}=\sqrt{\lambda} B+1.3 \sigma \sqrt{\ln \left|A_{t} / \lambda\right|}+4 \sqrt{\ln (2 / \delta)}$.
Proof. We apply the self-normalized process concentration inequality to obtain that

$$
\left\|\sum_{s=1}^{t} \epsilon_{s}\left(x_{s}, a_{s}\right) \psi\left(x_{s}, a_{s}\right)\right\|_{A_{t}^{-1}} \leq 1.3 \sigma \sqrt{\ln \left|A_{0}^{-1} A_{t}\right|}+4 \sqrt{\ln (2 / \delta)}, \quad \forall t
$$

Then, we can add and subtract $u^{\top} A_{t}^{-1} \sum_{s=1}^{t} w_{*}^{\top} \psi\left(x_{s}, a_{s}\right) \psi\left(x_{s}, a_{s}\right)$ to obtain that

$$
\begin{aligned}
u^{\top}\left(w_{t}-w_{*}\right) & =u^{\top} A_{t}^{-1} \sum_{s=1}^{t} r_{s}\left(x_{s}, a_{s}\right) \psi\left(x_{s}, a_{s}\right)-u^{\top} w_{*} \\
& =u^{\top} A_{t}^{-1} \sum_{s=1}^{t} \epsilon_{s}\left(x_{s}, a_{s}\right) \psi\left(x_{s}, a_{s}\right)-\lambda u^{\top} A_{t}^{-1} w_{*} \\
& \leq\|u\|_{A_{t}^{-1}}\left\|\sum_{s=1}^{t} \epsilon_{s}\left(x_{s}, a_{s}\right) \psi\left(x_{s}, a_{s}\right)\right\|_{A_{t}^{-1}}+\lambda\|u\|_{A_{t}^{-1}}\left\|w_{*}\right\|_{A_{t}^{-1}} \\
& \leq\|u\|_{A_{t}^{-1}}\left(1.3 \sigma \sqrt{\ln \left(\left|A_{0}^{-1} A_{t}\right|\right)}+4 \sqrt{\ln (2 / \delta)}\right)+\sqrt{\lambda}\|u\|_{A_{t}^{-1}}\left\|w_{*}\right\|_{2}
\end{aligned}
$$

We have the following theoretical result.
Theorem 3. Assume that $r_{t}\left(x_{t}, a_{t}\right) \in[0,1]$ and

$$
\operatorname{var}_{r_{t} \mid x_{t}, a_{t}} r_{t}\left(x_{t}, a_{t}\right) \leq \sigma^{2}, \quad\left\|w_{*}\right\| \leq B
$$

Let $\mu_{t}(x, a)=\mathbb{E}_{\epsilon_{t}(x, a)} r_{t}(x, a)=w_{*}^{\top} \psi(x, a)$ and $a_{*}(x) \in \operatorname{argmax}_{a} \mu_{t}(x, a)$. Then, with probability at least $1-\delta$, for any $t \geq 0$, and $u \in \mathbb{R}^{d}$, LinUCB satisfies

$$
\mathbb{E} \sum_{t=1}^{T}\left[\mu_{t}\left(x_{t}, a_{*}\left(x_{t}\right)\right)-\mu_{t}\left(x_{t}, a_{t}\right)\right] \leq 2.5 \sqrt{\ln \left|A_{T} / \lambda\right| \sum_{t=1}^{T} \beta_{t}^{2}}
$$

where $\beta_{t}=\sqrt{\lambda} B+1.3 \sigma \sqrt{\ln \left|A_{t} / \lambda\right|}+4 \sqrt{\ln (2 / \delta)}$.
Proof. For $t \geq 1$, with probability at least $1-\delta$, we have

$$
\begin{aligned}
& w_{*}^{\top} \psi\left(x_{t}, a_{*}\left(x_{t}\right)\right) \\
\leq & w_{t-1}^{\top} \psi\left(x_{t}, a_{*}\left(x_{t}\right)\right)+\beta_{t-1} \sqrt{\psi\left(x_{t}, a_{*}\left(x_{t}\right)\right)^{\top} A_{t-1}^{-1} \psi\left(x_{t}, a_{*}\left(x_{t}\right)\right)} \\
\leq & w_{t-1}^{\top} \psi\left(x_{t}, a_{t}\right)+\beta_{t-1} \sqrt{\psi\left(x_{t}, a_{t}\right)^{\top} A_{t-1}^{-1} \psi\left(x_{t}, a_{t}\right)} \quad \text { By optimism. } \\
\leq & w_{*}^{\top} \psi\left(x_{t}, a_{t}\right)+2 \beta_{t-1} \sqrt{\psi\left(x_{t}, a_{t}\right)^{\top} A_{t-1}^{-1} \psi\left(x_{t}, a_{t}\right)}
\end{aligned}
$$

The result then follows a careful analysis of the self-normalized process. Since $w_{*}^{\top} \psi\left(x_{t}, a\right) \in[0,1]$,
we can refined the regret bound by

$$
w_{*}^{\top} \psi\left(x_{t}, a_{*}\left(x_{t}\right)\right)-w_{*}^{\top} \psi\left(x_{t}, a_{t}\right) \leq 2 \beta_{t-1} \sqrt{\min \left(\psi\left(x_{t}, a_{t}\right)^{\top} A_{t-1}^{-1} \psi\left(x_{t}, a_{t}\right), 0.25\right)} .
$$

By summing over $t=1$ to $t=T$, we have

$$
\begin{aligned}
& \sum_{t=1}^{T}\left[\mu_{t}\left(x_{t}, a_{*}\left(x_{t}\right)\right)-\mu_{t}\left(x_{t}, a_{t}\right)\right] \\
\leq & 2 \sum_{t=1}^{T} \beta_{t-1} \sqrt{\min \left(\psi\left(x_{t}, a_{t}\right)^{\top} A_{t-1}^{-1} \psi\left(x_{t}, a_{t}\right), 0.25\right)} \\
\leq & 2 \sqrt{\sum_{t=1}^{T} \beta_{t}^{2}} \sqrt{\sum_{t=1}^{T} \min \left(\psi\left(x_{t}, a_{t}\right)^{\top} A_{t-1}^{-1} \psi\left(x_{t}, a_{t}\right), 0.25\right)} \\
\leq & 2 \sqrt{\sum_{t=1}^{T} \beta_{t}^{2}} \sqrt{1.25 \sum_{t=1}^{T} \frac{\psi\left(x_{t}, a_{t}\right)^{\top} A_{t-1}^{-1} \psi\left(x_{t}, a_{t}\right)}{1+\psi\left(x_{t}, a_{t}\right)^{\top} A_{t-1}^{-1} \psi\left(x_{t}, a_{t}\right)}} .
\end{aligned}
$$

5 Weakly Nonlinear UCB with Eluder Coefficient

Definition 3. Stochastic nonlinear contextual bandit is a contextual bandit problem, where the reward at each time step t is given by

$$
r_{t}(a)=r_{t}\left(x_{t}, a\right)=f_{*}\left(x_{t}, a\right)+\epsilon_{t}\left(x_{t}, a\right),
$$

where $\epsilon_{t}(x, a)$ is a zero-mean random variable. We assume that $f_{*}(x, a) \in \mathcal{F}$ for a known function class $\mathcal{F}: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$. We also define

$$
f(x)=\max _{a \in \mathcal{A}} f(x, a) .
$$

5.1 Non-linear UCB

In this section, we still consider a UCB-type algorithm where we maintain a confidence set, also referred to as a version space, \mathcal{F}_{t}, such that $f_{*} \in \mathcal{F}_{t}$ with high probability. Then, given x_{t}, the
algorithm chooses f_{t} by

$$
f_{t}=\underset{f \in \mathcal{F}_{t-1}}{\operatorname{argmax}} f\left(x_{t}\right), \quad a_{t} \in \underset{a}{\operatorname{argmax}} f_{t}\left(x_{t}, a\right) .
$$

As a special case, we consider the linear setting where $\mathcal{F}=\left\{f_{w}(x, a)=w^{\top} \psi(x, a): w \in \mathbb{R}^{d}\right\}$. Let
$\mathcal{F}_{t}=\left\{f_{w}(\cdot): \sum_{s=1}^{t}\left(w^{\top} \psi\left(x_{s}, a_{s}\right)-r_{s}\left(x_{s}, a_{s}\right)\right)^{2}+\lambda\|w\|_{2}^{2} \leq \inf _{w_{0}} \sum_{s=1}^{t}\left(w_{0}^{\top} \psi\left(x_{s}, a_{s}\right)-r_{s}\left(x_{s}, a_{s}\right)\right)^{2}+\lambda\left\|w_{0}\right\|_{2}^{2}+\beta_{t}^{2}\right\}$.
Then, we have

$$
\mathcal{F}_{t-1}=\left\{f_{w}(x, a):\left\|w-w_{t-1}\right\|_{A_{t-1}} \leq \beta_{t-1}\right.
$$

and

$$
\max _{f \in \mathcal{F}_{t-1}} f\left(x_{t}, a\right)=w_{t-1}^{\top} \psi\left(x_{t}, a\right)+\beta_{t-1}\left\|\psi\left(x_{t}, a\right)\right\|_{A_{t-1}^{-1}}
$$

where $w_{t-1}=\operatorname{argmax}_{w^{\prime}} \sum_{s=1}^{t-1}\left(\left(w^{\prime}\right)^{\top} \psi\left(x_{s}, a_{s}\right)-r_{s}\left(x_{s}, a_{s}\right)\right)^{2}+\lambda\left\|w^{\prime}\right\|_{2}^{2}$.
Intuitively, the version space \mathcal{F}_{t} contains functions that fit well on the historical dataset $\mathcal{S}_{t}=$ $\left\{\left(x_{s}, a_{s}, r_{s}\right)\right\}_{s=1}^{t}$ and we expect that they perform well on the unseen sample at iteration $t+1$, which corresponds to the out-of-sample error. To analyze the algorithm, we need some structural information to ensure certain good generalization property.

Definition 4 (Eluder Coefficient). Given a function class \mathcal{F}, its Eluder coefficient $\mathrm{EC}(\epsilon, \mathcal{F}, T)$ is defined to be the smallest number d so that for any sequence $\left\{\left(x_{t}, a_{t}\right)\right\}_{t=1}^{T}$ and $\left\{f_{t}\right\}_{t=1}^{T} \in \mathcal{F}$:

$$
\sum_{t=2}^{T}\left[f_{t}\left(x_{t}, a_{t}\right)-f_{*}\left(x_{t}, a_{t}\right)\right] \leq \sqrt{d \sum_{t=2}^{T}\left(\epsilon+\sum_{s=1}^{t-1}\left|f_{t}\left(x_{s}, a_{s}\right)-f_{*}\left(x_{s}, a_{s}\right)\right|^{2}\right)}
$$

Theorem 4. Assume that ϵ_{t} is conditioned zero-mean sub-Gaussian noise: for all $\lambda \in \mathbb{R}$,

$$
\ln \mathbb{E}\left[e^{\lambda \epsilon t} \mid x_{t}, \mathcal{F}_{t-1}\right] \leq \frac{\lambda^{2}}{2} \sigma^{2}
$$

If we define

$$
\hat{f}_{t}=\underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{s=1}^{t}\left(f\left(x_{s}, a_{s}\right)-r_{s}\right)^{2},
$$

and

$$
\mathcal{F}_{t}=\left\{f \in \mathcal{F}: \sum_{s=1}^{t}\left(f\left(x_{s}, a_{s}\right)-\hat{f}\left(x_{s}, a_{s}\right)\right)^{2} \leq \beta_{t}^{2}\right\},
$$

where

$$
\beta_{t}^{2}=\inf _{\epsilon>0}\left[9 \epsilon t(\sigma+2 \epsilon)+12 \sigma^{2} \ln \left(2 N\left(\epsilon, \mathcal{F},\|\cdot\|_{\infty}\right) / \delta\right] .\right.
$$

Then with probability at least $1-\delta$:

$$
\sum_{t=2}^{T}\left[f_{*}\left(x_{t}\right)-f_{*}\left(x_{t}, a_{t}\right)\right] \leq \sqrt{\mathrm{EC}(\epsilon, \mathcal{F}, T)\left(\epsilon T+4 \sum_{t=2}^{T} \beta_{t-1}^{2}\right)}
$$

Proof. We have

$$
\begin{aligned}
& f_{*}\left(x_{t}\right)-f_{*}\left(x_{t}, a_{t}\right) \\
= & f_{*}\left(x_{t}\right)-f_{t}\left(x_{t}\right)+f_{t}\left(x_{t}, a_{t}\right)-f_{*}\left(x_{t}, a_{t}\right) \\
\leq & f_{t}\left(x_{t}, a_{t}\right)-f_{*}\left(x_{t}, a_{t}\right),
\end{aligned}
$$

where we use $f_{t}\left(x_{t}\right)=f_{t}\left(x_{t}, a_{t}\right)$ as a_{t} is greedy with respect to f_{t} and the inequality is due to optimism of f_{t}. It follows that

$$
\begin{aligned}
& \sum_{t=2}^{T}\left[f_{*}\left(x_{t}\right)-f_{*}\left(x_{t}, a_{t}\right)\right] \\
\leq & \sum_{t=2}^{T}\left[f_{t}\left(x_{t}, a_{t}\right)-f_{*}\left(x_{t}, a_{t}\right)\right] \\
\leq & \sqrt{\operatorname{EC}(\epsilon, \mathcal{F}, T) \sum_{t=2}^{T}\left(\epsilon+\sum_{s=1}^{t-1}\left|f_{t}\left(x_{s}, a_{s}\right)-f_{*}\left(x_{s}, a_{s}\right)\right|^{2}\right)} \\
\leq & \sqrt{\operatorname{EC}(\epsilon, \mathcal{F}, T)\left(\epsilon T+4 \sum_{t=2}^{T} \beta_{t-1}^{2}\right)}
\end{aligned}
$$

where the last inequality follows from

$$
\begin{aligned}
& \sum_{s=1}^{t-1}\left|f_{t}\left(x_{s}, a_{s}\right)-f_{*}\left(x_{s}, a_{s}\right)\right|^{2} \\
\leq & 4 \sum_{s=1}^{t-1}\left[\left|f_{t}\left(x_{s}, a_{s}\right)-\hat{f}_{t-1}\left(x_{s}, a_{s}\right)\right|^{2}+\left|f_{*}\left(x_{s}, a_{s}\right)-\hat{f}_{t-1}\left(x_{s}, a_{s}\right)\right|^{2}\right] \leq 4 \beta_{t-1}^{2} .
\end{aligned}
$$

as $f_{t}, f_{*} \in \mathcal{F}_{t}$. It remains to determine the value of β_{t}^{2} and to show that the sequence ensures optimism. This follows from standard ridge regression analysis and we omit it here.

5.2 Estimating Eluder Coefficient

Lemma 5. Consider a RKHS \mathcal{H} with feature representation $f(x, a)=w \cdot \psi(x, a)$ for all $f \in \mathcal{H}$ and $\|f\|_{\mathcal{H}}=\|w\|_{2}$. Assume that $\left\|f-f_{*}\right\|_{\mathcal{H}} \leq B$ for all $f \in \mathcal{F} \subset \mathcal{H}$ and $\psi(x, a)=\left[\psi_{j}(x, a)\right]_{j=1}^{\infty}$. Given any $\epsilon^{\prime}>0$, we also denote

$$
d\left(\epsilon^{\prime}\right)=\min \left\{|S|: \sup _{x, a} \sum_{j \notin S}\left(\psi_{j}(x, a)\right)^{2} \leq \epsilon^{\prime}\right\}
$$

and $\|\psi(x, a)\|_{2} \leq B^{\prime}$. If $\left|f-f_{*}\right| \leq M$ for all $f \in \mathcal{F}$, then we have

$$
\begin{equation*}
\mathrm{EC}(\epsilon, \mathcal{F}, T) \leq\left(1+\epsilon^{-1}\right) d\left(\epsilon B^{-2}\right) \ln \left(1+\frac{T\left(B B^{\prime}\right)^{2}}{d\left(\epsilon B^{-2}\right) \epsilon}\right) \tag{5.1}
\end{equation*}
$$

In particular, if \mathcal{H} is d-dimensional for a finite d, then we have

$$
\mathrm{EC}\left(M^{2}, \mathcal{F}, T\right) \leq 2 d \ln \left(1+4 T\left(B B^{\prime} / M\right)^{2} / d\right)
$$

References

Abbasi-Yadkori, Y., Pál, D., \& Szepesvári, C. (2011). Improved algorithms for linear stochastic bandits. Advances in neural information processing systems, 24.

Chu, W., Li, L., Reyzin, L., \& Schapire, R. (2011). Contextual bandits with linear payoff functions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (pp. 208-214).: JMLR Workshop and Conference Proceedings.

