Non-linear Contextual Bandit

August 7, 2022

4 1 Introduction

1

2

3

5 We focus on contextual bandit in this note.

6 2 Contextual Bandit

7 2.1 Problem Formulation

Befinition 1 (Contextual bandit). A contextual bandit problem is a tuple $(\mathcal{X}, \mathcal{A}, r)$. Given context 9 $x \in \mathcal{X}$, we take an action $a \in \mathcal{A}$, and observe a reward $r \in \mathbb{R}$ that can depend on (x, a). The bandit 10 game repeats as follows: at each time step t,

• We observe a context $x_t \in \mathcal{X}$;

• The player chooses one arm $a_t \in \mathcal{A}$;

• The reward r_t is revealed.

The goal is to maximize the expected cumulative reward:

$$\sum_{t=1}^T \mathbb{E}_{a_t \sim \pi_t}[r_t(a_t)],$$

where $\pi_t : \mathcal{X} \to \Delta_{\mathcal{A}}$ is a policy. The reward generalization can be either adversarial or stochastic.

• Stochastic: there exists an unknown value function:

$$f_*(x,a) = \mathbb{E}[r|x,a], \qquad f_*(x) = \max_{a \in \mathcal{A}} f(x,a).$$

• Adversarial: we are given an arbitrary reward sequence $\{[r_t(a) : a \in A] : t \in [T]\}$ before hand (also referred to as an oblivious adversary).

17 2.2 Preliminary

Lemma 1. Given any function U(w), we have

$$\min_{n} \left[\mathbb{E}_{w \sim p} U(w) + \operatorname{KL}\left(p \| p_0\right) \right] = -\ln \mathbb{E}_{w \sim p_0} \exp(-U(w)),$$

where the minimum is achieved by the Gibbs distribution $q(w) \propto p_0(w) \exp(-U(w))$.

¹⁹ 3 EXP4 for Adversarial Contextual Bandit

We consider the finite-arm setting where $\mathcal{A} = \{1, \dots, K\}$. Assume that we are given a random policy class indexed by w:

$$\mathcal{G} = \{ p(a|w, x) : w \in \Omega \}$$

where each $p(\cdot|w, x)$ is a conditional distribution over $\{1, \dots, K\}$. The EXP4 algorithm maintains a distribution over the policy class, which induces a distribution over \mathcal{A} by:

$$p_t(a) = (1 - \gamma) \mathbb{E}_{w \sim p_{t-1}(w)} p(a|w, x_t) + \frac{\gamma}{K},$$
(3.1)

where $\gamma > 0$ is a parameter controlling exploration. It remains to construct the posterior distribution $p_t(w)$ over \mathcal{G} .

We start with a prior $p_0(w)$. The posterior is constructed by standard online aggregation trick. For each time step t, we use the following reward estimators:

$$\hat{r}_t(w, x_t) = \frac{p(a_t|w, x_t)}{p_t(a_t)} (r_t(a_t) - b).$$
(3.2)

Then, the posterior is given by

$$p_t(w) = \frac{p_0(w) \exp\left(\eta \sum_{i=1}^t \hat{r}_t(w, x_t)\right)}{\mathbb{E}_{w \sim p_0(w)} p_0(w) \exp\left(\eta \sum_{i=1}^t \hat{r}_t(w, x_t)\right)}.$$
(3.3)

The estimator is unbiased for

$$r_t(w, x_t) - b = \sum_{a=1}^{K} p(a|w, x_t)(r_t(a) - b),$$

which relies on the full reward vector at time step t. The parameter b also controls exploration by

²³ put more penalty on the observed arm and thereby favors arms that are not observed.

²⁴ We have the following theoretical guarantee.

Theorem 1. For any $K, T \ge 0$ and any $\gamma \in (0, 1], \eta > 0$ and $b \ge 0$. Consider any family of policies

 $\mathcal{G} = \{p(a|w, x) : w \in \Omega\}$ with prior $p_0(w)$. Then, we have

$$\mathbb{E}\sum_{t=1}^{T} r_{t}(a_{t}) \geq (1-\gamma) \max_{q} \left[\mathbb{E}_{w \sim q} \sum_{t=1}^{T} \mathbb{E}_{a \sim p(\cdot|w,x_{t})} r_{t}(a) - \frac{1}{\eta} \mathrm{KL}\left(q||p_{0}\right), \right] - c(\eta,b) \eta \sum_{t=1}^{T} \sum_{a=1}^{K} |r_{t}(a) - b|,$$
(3.4)

where the expectation is w.r.t. the randomness of the algorithm,

$$c(\eta, b) = \psi(z_0) \max(b, 1-b), \quad z_0 = \max(0, \eta(1-b)K/\gamma),$$

25 and $\psi(z) = (e^z - 1 - z)/z^2$.

²⁶ We have the following corollary.

Corollary 2. Let $\eta = \gamma/K$ and b = 0. Assumes that the uniform random policy belongs to \mathcal{G} and $|\mathcal{G}| = N < \infty$. Let $p_0(w)$ be the uniform prior over Ω , then

$$G_* - \mathbb{E}\sum_{t=1}^T r_t(a_t) \le (e-1)\gamma G_* + \frac{K\ln N}{\gamma},$$
(3.5)

where the expectation is with respect to the randomness of algorithm, and

$$G_* = \underset{w}{\operatorname{argmax}} \sum_{t=1}^T \mathbb{E}_{a \sim p(\cdot|w, x_t)}[r_t(a)].$$

Remark 1. For Hedge with full feedback, we do not have to explore in order to obtain rewards for
different arms. This removes the K-dependency in the resulting bound.

Remark 2. EXP4 tries to find a best policy within a policy class, which can be regarded as a policy-based algorithm.

31 3.1 Analysis

Theorem 1. We will first estimate the first-order moment and second-order moment of the reward estimator, respectively. Then, we will use the fact that $\psi(z) = (e^z - 1 - z)/z^2$ is increasing so we can bound e^z (which is the likelihood) by $1 + z + \psi(z_0)z^2$ (which have been estimated). We then use standard online aggregation analysis trick to finish the proof.

By Eqn. (3.1), we know that

$$\mathbb{E}_{w \sim p_{t-1}(w)} p(a_t | w, x_t) \le p_t(a_t) / (1 - \gamma).$$
(3.6)

This implies that

$$\mathbb{E}_{w \sim p_{t-1}(w)} \hat{r}_t(w, x_t) = \mathbb{E}_{w \sim p_{t-1}(w)} p(a_t \mid w, x_t) [r_t(a_t) - b] / p_t(a_t)$$

$$\leq \frac{1}{1 - \gamma} r_t(a_t) - q_t(a_t) b, \qquad (3.7)$$

where $q_t(a) = \mathbb{E}_{w \sim p_{t-1}(w)} p(a|w, x_t) / p_t(a)$. We also have

$$\mathbb{E}_{w \sim p_{t-1}(w)} \hat{r}_{t}(w, x_{t})^{2} = \mathbb{E}_{w \sim p_{t-1}(w)} p(a_{t} | w, x_{t})^{2} ((r_{t}(a_{t}) - b) / p_{t}(a_{t}))^{2} \\ \leq \max(b, 1 - b) \mathbb{E}_{w \sim p_{t-1}(w)} p(a_{t} | w, x_{t}) (|r_{t}(a_{t}) - b| / p_{t}(a_{t})^{2}) \\ \leq \frac{\max(b, 1 - b)}{1 - \gamma} (|r_{t}(a_{t}) - b| / p_{t}(a_{t})),$$
(3.8)

where the first inequality uses $p(a_t|w, x_t) \leq 1$ and $|r_t(a_t) - b| \leq \max(b, 1 - b)$; the second inequality uses Eqn. (3.6). We still need a range estimation for $\eta \hat{r}_t(w, x_t)$:

$$\eta \hat{r}_t(w, x_t) = \eta \frac{p(a_t | w, x_t)}{p_t(a_t)} (r_t(a_t) - b) \le \max(0, \eta (1 - b) K / \gamma),$$

as $p(a_t|w, x_t)/p_t(a_t) \ge \gamma/K$. We now define

$$W_t = \mathbb{E}_{w \sim p_0(w)} \exp(\eta \sum_{k=1}^t \hat{r}_k(w, x_k)).$$

It follows that

$$\ln \frac{W_{t}}{W_{t-1}} = \ln \mathbb{E}_{w \sim p_{0}(w)} \frac{\exp(\eta \sum_{k=1}^{t} \hat{r}_{k}(w, x_{k}))}{W_{t-1}}$$

$$= \ln \mathbb{E}_{w \sim p_{0}(w)} \frac{\exp(\eta \sum_{k=1}^{t-1} \hat{r}_{k}(w, x_{k}))}{\mathbb{E}_{w \sim p_{0}(w)} \exp(\eta \sum_{k=1}^{t-1} \hat{r}_{k}(w, x_{k}))} \exp(\eta \hat{r}_{t}(w, x_{t}))$$

$$= \ln \mathbb{E}_{w \sim p_{t-1}(w)} \exp(\eta \hat{r}_{t}(w, x_{t}))$$

$$\leq \ln \mathbb{E}_{w \sim p_{t-1}(w)} \left[1 + (\eta \hat{r}_{t}(w, x_{t})) + \psi(z_{0})(\eta \hat{r}_{t}(w, x_{t}))^{2}\right]$$

$$\leq \mathbb{E}_{w \sim p_{t-1}(w)} (\eta \hat{r}_{t}(w, x_{t})) + \psi(z_{0}) \mathbb{E}_{w \sim p_{t-1}(w)}(\eta \hat{r}_{t}(w, x_{t}))^{2}$$

$$\leq \frac{\eta}{1-\gamma} r_{t}(a_{t}) - \eta q_{t}(a_{t}) b + \frac{c(\eta, b)\eta^{2}}{(1-\gamma)} \frac{|r_{t}(a_{t}) - b|}{p_{t}(a_{t})},$$

where in the first inequality we uses $z = \eta \hat{r}_t(w, x_t) \leq \max(0, \eta(1-b)K/\gamma)$; the second inequality uses $\ln(1+z) \leq z$; and the last inequality uses Eqn. (3.7) and (3.8), with $c(\eta, b) = \psi(z_0) \max(b, 1-b)$. Note $W_0 = 1$. We now sum over $t \in [T]$ to obtain that

$$\ln W_T = \ln \frac{W_T}{W_0} \le \frac{\eta}{1 - \gamma} \sum_{t=1}^T r_t(a_t) - \eta b \sum_{t=1}^T q_t(a_t) + \frac{c(\eta, b)\eta^2}{(1 - \gamma)} \sum_{t=1}^T \frac{|r_t(a_t) - b|}{p_t(a_t)}.$$

Taking expectation with respect to the randomness of the algorithm, we have

$$\mathbb{E}\ln W_T = \mathbb{E}\ln \mathbb{E}_{w \sim p_0(w)} \exp\left(\eta \sum_{t=1}^T \hat{r}_t(w, x_t)\right)$$
$$\leq \frac{\eta}{1-\gamma} \mathbb{E}\sum_{t=1}^T r_t(a_t) - \eta T b + \frac{c(\eta, b)\eta^2}{(1-\gamma)} \mathbb{E}\sum_{t=1}^T \sum_{a=1}^K |r_t(a) - b|.$$

We now invoke Lemma 1 to derive an lower bound of $\mathbb{E} \ln W_T$.

$$\mathbb{E} \ln \mathbb{E}_{w \sim p_0(w)} \exp\left(\eta \sum_{t=1}^T \hat{r}_t(w, x_t)\right)$$
$$= \mathbb{E} \max_q \left[\mathbb{E}_{w \sim q} \eta \sum_{t=1}^T \hat{r}_t(w, x_t) - \mathrm{KL}\left(q \| p_0\right)\right]$$
$$\geq \max_q \mathbb{E} \left[\mathbb{E}_{w \sim q} \eta \sum_{t=1}^T \hat{r}_t(w, x_t) - \mathrm{KL}\left(q \| p_0\right)\right]$$
$$= \max_q \mathbb{E} \left[\mathbb{E}_{w \sim q} \eta \sum_{t=1}^T \left[r_t\left(w, x_t\right) - b\right] - \mathrm{KL}\left(q \| p_0\right)\right],$$

where we use Lemma 1 in the first equality and $r_t(w, x_t) = \mathbb{E}_{a \sim p(\cdot | w, x_t)} r(a)$. The desired theorem then follows from rearranging terms.

38 We now prove the corollary.

Proof of Corollary 2. With the specified choice of parameters, we now have $\eta \hat{r}_t(w, x_t) \leq 1$ and $c(\eta, b) = e - 2$. Note that the uniform random policy belongs to Ω implies that

$$\frac{1}{K}\sum_{t=1}^{T}\sum_{a=1}^{K}r_t(a) \le G_*.$$

With $q(w) := I(w = w_*)$, where w_* achieves the maximum of G_* , from Theorem 1, we have

$$\mathbb{E}\sum_{t=1}^{T} r_t \left(a_t \right) \ge (1-\gamma) \left[G_* - \frac{K}{\gamma} \ln N \right] - (e-2)\gamma G_*.$$

39

40 4 LinUCB for Stochastic Contextual Bandit

41 We consider the stochastic contextual bandit with linear function approximation.

Definition 2 (Stochastic Linear Contextual Bandit). The reward at each time step is given by

$$r_t(a) = r_t(x_t, a) = w_*^{+} \psi(x_t, a) + \epsilon_t(x_t, a),$$

42 where $\psi(\cdot, \cdot) : \mathcal{X} \times \mathcal{A} \to \mathbb{R}^d$ is a known feature map and $\epsilon_t(x, a)$ is a zero-mean random variable.

In this setting, the number of arms can be either infinite or finite. We remark that the condition that $|\mathcal{A}|$ is finite can be used to achieve sharper regret bound, known as the finite-action case (Chu et al., 2011). Here we focus the UCB-type algorithm presented in Abbasi-Yadkori et al. (2011).

46 4.1 Optimism in Face of Uncertainty

⁴⁷ The core design of a UCB-type algorithm is to determine the confidence set such that:

• Optimism is achieved: the optimal target lies in the confidence set;

• The confidence set is as sharp as possible.

In this case, we start with $A_0 = \lambda I$, $w_0 = b_0 = 0$. At each iteration step t, after observe context x_t ,

• We choose
$$a_t \in \operatorname{argmax}_a[w_{t-1}^\top \psi(x_t, a) + \beta_{t-1} \| \psi(x_t, a) \|_{A_{t-1}^{-1}}];$$

•
$$b_t = b_{t-1} + r_t(x_t, a_t)\psi(x_t, a_t);$$

•
$$A_t = A_{t-1} + \psi(x_t, a_t)\psi(x_t, a_t)^{\top};$$

•
$$w_t = A_t^{-1} b_t$$
.

⁵⁵ The proof employs the following famous self-normalized process concentration bound, which holds

⁵⁶ for all arms (possible infinitely many).

Lemma 2 (Self-normalized process concentration inequality). Let $\{(X_t, \epsilon_t)\}$ be a sequence in $\mathbb{R}^d \times \mathbb{R}$ w.r.t. a filtration $\{\mathcal{F}_t\}$ so that

$$\mathbb{E}[\epsilon_t | X_t, \mathcal{F}_{t-1}] = 0, \qquad \operatorname{var}[\epsilon_t | X_t, \mathcal{F}_{t-1}] \le \sigma^2$$

. Assume also that $|\epsilon_t| \leq M$. Let Λ_0 be a positive definite matrix, and

$$\Lambda_t = \Lambda_0 + \sum_{s=1}^t X_s X_s^\top.$$

Then, for any $\delta > 0$, with probability at least $1 - \delta$, for all $t \ge 0$:

$$\left\|\sum_{t=1}^{t} \epsilon_s X_s\right\|_{\Lambda_t^{-1}}^2 \le 1.3\sigma^2 \ln|\Lambda_0^{-1}\Lambda_t| + 4M^2 \ln(2/\delta).$$

Lemma 3 (Concentration and Optimism). Assume that $r_t(x_t, a_t) \in [0, 1]$ and

$$\operatorname{var}_{r_t|x_t, a_t}(r_t(x_t, a_t)) \le \sigma^2.$$

Assume further that $||w_*||_2 \leq B$ for some constant B. Then, with probability at least $1 - \delta$, for all $t \geq 0$, and $u \in \mathbb{R}^d$, we have :

$$|u^{\top}(w_t - w_*)| \le \beta_t \sqrt{u^{\top} A_t^{-1} u},$$

57 where $\beta_t = \sqrt{\lambda}B + 1.3\sigma\sqrt{\ln|A_t/\lambda|} + 4\sqrt{\ln(2/\delta)}$.

Proof. We apply the self-normalized process concentration inequality to obtain that

$$\left\|\sum_{s=1}^{t} \epsilon_s(x_s, a_s) \psi(x_s, a_s)\right\|_{A_t^{-1}} \le 1.3\sigma \sqrt{\ln|A_0^{-1}A_t|} + 4\sqrt{\ln(2/\delta)}, \qquad \forall t.$$

Then, we can add and subtract $u^{\top}A_t^{-1}\sum_{s=1}^t w_*^{\top}\psi(x_s,a_s)\psi(x_s,a_s)$ to obtain that

$$u^{\top} (w_{t} - w_{*}) = u^{\top} A_{t}^{-1} \sum_{s=1}^{t} r_{s} (x_{s}, a_{s}) \psi (x_{s}, a_{s}) - u^{\top} w_{*}$$

$$= u^{\top} A_{t}^{-1} \sum_{s=1}^{t} \epsilon_{s} (x_{s}, a_{s}) \psi (x_{s}, a_{s}) - \lambda u^{\top} A_{t}^{-1} w_{*}$$

$$\leq \|u\|_{A_{t}^{-1}} \left\| \sum_{s=1}^{t} \epsilon_{s} (x_{s}, a_{s}) \psi (x_{s}, a_{s}) \right\|_{A_{t}^{-1}} + \lambda \|u\|_{A_{t}^{-1}} \|w_{*}\|_{A_{t}^{-1}}$$

$$\leq \|u\|_{A_{t}^{-1}} \left(1.3\sigma \sqrt{\ln\left(\left|A_{0}^{-1}A_{t}\right|\right)} + 4\sqrt{\ln(2/\delta)} \right) + \sqrt{\lambda} \|u\|_{A_{t}^{-1}} \|w_{*}\|_{2}.$$

E	· 0
- 33	o

59

We have the following theoretical result.

Theorem 3. Assume that $r_t(x_t, a_t) \in [0, 1]$ and

$$\operatorname{var}_{r_t|x_t, a_t} r_t(x_t, a_t) \le \sigma^2, \qquad \|w_*\| \le B.$$

Let $\mu_t(x, a) = \mathbb{E}_{\epsilon_t(x, a)} r_t(x, a) = w_*^\top \psi(x, a)$ and $a_*(x) \in \operatorname{argmax}_a \mu_t(x, a)$. Then, with probability at least $1 - \delta$, for any $t \ge 0$, and $u \in \mathbb{R}^d$, LinUCB satisfies

$$\mathbb{E}\sum_{t=1}^{T} \left[\mu_t \left(x_t, a_* \left(x_t\right)\right) - \mu_t \left(x_t, a_t\right)\right] \le 2.5 \sqrt{\ln |A_T/\lambda| \sum_{t=1}^{T} \beta_t^2},$$

60 where $\beta_t = \sqrt{\lambda}B + 1.3\sigma\sqrt{\ln|A_t/\lambda|} + 4\sqrt{\ln(2/\delta)}$.

Proof. For $t \geq 1$, with probability at least $1 - \delta$, we have

$$\begin{split} & w_{*}^{\top}\psi\left(x_{t}, a_{*}\left(x_{t}\right)\right) \\ \leq & w_{t-1}^{\top}\psi\left(x_{t}, a_{*}\left(x_{t}\right)\right) + \beta_{t-1}\sqrt{\psi\left(x_{t}, a_{*}\left(x_{t}\right)\right)^{\top}A_{t-1}^{-1}\psi\left(x_{t}, a_{*}\left(x_{t}\right)\right)} \\ \leq & w_{t-1}^{\top}\psi\left(x_{t}, a_{t}\right) + \beta_{t-1}\sqrt{\psi\left(x_{t}, a_{t}\right)^{\top}A_{t-1}^{-1}\psi\left(x_{t}, a_{t}\right)} \\ \leq & w_{*}^{\top}\psi\left(x_{t}, a_{t}\right) + 2\beta_{t-1}\sqrt{\psi\left(x_{t}, a_{t}\right)^{\top}A_{t-1}^{-1}\psi\left(x_{t}, a_{t}\right)}. \end{split}$$
 By optimism.

The result then follows a careful analysis of the self-normalized process. Since $w_*^{\top}\psi(x_t,a) \in [0,1]$,

we can refined the regret bound by

$$w_*^{\top}\psi(x_t, a_*(x_t)) - w_*^{\top}\psi(x_t, a_t) \le 2\beta_{t-1}\sqrt{\min\left(\psi(x_t, a_t)^{\top} A_{t-1}^{-1}\psi(x_t, a_t), 0.25\right)}.$$

By summing over t = 1 to t = T, we have

$$\sum_{t=1}^{T} \left[\mu_t \left(x_t, a_* \left(x_t \right) \right) - \mu_t \left(x_t, a_t \right) \right]$$

$$\leq 2 \sum_{t=1}^{T} \beta_{t-1} \sqrt{\min \left(\psi \left(x_t, a_t \right)^\top A_{t-1}^{-1} \psi \left(x_t, a_t \right), 0.25 \right)}$$

$$\leq 2 \sqrt{\sum_{t=1}^{T} \beta_t^2} \sqrt{\sum_{t=1}^{T} \min \left(\psi \left(x_t, a_t \right)^\top A_{t-1}^{-1} \psi \left(x_t, a_t \right), 0.25 \right)}$$

$$\leq 2 \sqrt{\sum_{t=1}^{T} \beta_t^2} \sqrt{1.25 \sum_{t=1}^{T} \frac{\psi \left(x_t, a_t \right)^\top A_{t-1}^{-1} \psi \left(x_t, a_t \right)}{1 + \psi \left(x_t, a_t \right)^\top A_{t-1}^{-1} \psi \left(x_t, a_t \right)}}.$$

⁶¹ The proof is completed with the following lemma.

Lemma 4. Let Σ_0 be a $d \times d$ symmetric positive definite matrix and $\{\psi(X_t)\}$ be a sequence of vectors in \mathbb{R}^d . Let $\Sigma_t = \Sigma_0 + \sum_{s=1}^t \psi(X_s) \psi(X_s)^\top$, then

$$\sum_{s=1}^{t} \frac{\psi(X_{s})^{\top} \Sigma_{s-1}^{-1} \psi(X_{s})}{1 + \psi(X_{s})^{\top} \Sigma_{s-1}^{-1} \psi(X_{s})} \le \ln \left| \Sigma_{0}^{-1} \Sigma_{t} \right|.$$

⁶² 5 Weakly Nonlinear UCB with Eluder Coefficient

Definition 3. Stochastic nonlinear contextual bandit is a contextual bandit problem, where the reward at each time step t is given by

$$r_t(a) = r_t(x_t, a) = f_*(x_t, a) + \epsilon_t(x_t, a),$$

where $\epsilon_t(x, a)$ is a zero-mean random variable. We assume that $f_*(x, a) \in \mathcal{F}$ for a known function class $\mathcal{F} : \mathcal{X} \times \mathcal{A} \to \mathbb{R}$. We also define

$$f(x) = \max_{a \in \mathcal{A}} f(x, a).$$

63 5.1 Non-linear UCB

In this section, we still consider a UCB-type algorithm where we maintain a confidence set, also referred to as a version space, \mathcal{F}_t , such that $f_* \in \mathcal{F}_t$ with high probability. Then, given x_t , the

algorithm chooses f_t by

$$f_t = \operatorname*{argmax}_{f \in \mathcal{F}_{t-1}} f(x_t), \qquad a_t \in \operatorname*{argmax}_a f_t(x_t, a).$$

As a special case, we consider the linear setting where $\mathcal{F} = \{f_w(x, a) = w^\top \psi(x, a) : w \in \mathbb{R}^d\}$. Let

$$\mathcal{F}_{t} = \{f_{w}(\cdot) : \sum_{s=1}^{t} (w^{\top}\psi(x_{s}, a_{s}) - r_{s}(x_{s}, a_{s}))^{2} + \lambda \|w\|_{2}^{2} \le \inf_{w_{0}} \sum_{s=1}^{t} (w_{0}^{\top}\psi(x_{s}, a_{s}) - r_{s}(x_{s}, a_{s}))^{2} + \lambda \|w_{0}\|_{2}^{2} + \beta_{t}^{2}\}.$$

Then, we have

$$\mathcal{F}_{t-1} = \{ f_w(x, a) : \| w - w_{t-1} \|_{A_{t-1}} \le \beta_{t-1} \}$$

and

$$\max_{f \in \mathcal{F}_{t-1}} f(x_t, a) = w_{t-1}^{\top} \psi(x_t, a) + \beta_{t-1} \| \psi(x_t, a) \|_{A_{t-1}^{-1}},$$

64 where $w_{t-1} = \operatorname{argmax}_{w'} \sum_{s=1}^{t-1} ((w')^\top \psi(x_s, a_s) - r_s(x_s, a_s))^2 + \lambda \|w'\|_2^2$.

Intuitively, the version space \mathcal{F}_t contains functions that fit well on the historical dataset $\mathcal{S}_t = \{(x_s, a_s, r_s)\}_{s=1}^t$ and we expect that they perform well on the unseen sample at iteration t + 1, which corresponds to the out-of-sample error. To analyze the algorithm, we need some structural information to ensure certain good generalization property.

Definition 4 (Eluder Coefficient). Given a function class \mathcal{F} , its Eluder coefficient $EC(\epsilon, \mathcal{F}, T)$ is defined to be the smallest number d so that for any sequence $\{(x_t, a_t)\}_{t=1}^T$ and $\{f_t\}_{t=1}^T \in \mathcal{F}$:

$$\sum_{t=2}^{T} [f_t(x_t, a_t) - f_*(x_t, a_t)] \le \sqrt{d \sum_{t=2}^{T} \left(\epsilon + \sum_{s=1}^{t-1} |f_t(x_s, a_s) - f_*(x_s, a_s)|^2\right)}.$$

Theorem 4. Assume that ϵ_t is conditioned zero-mean sub-Gaussian noise: for all $\lambda \in \mathbb{R}$,

$$\ln \mathbb{E}[e^{\lambda \epsilon_t} | x_t, \mathcal{F}_{t-1}] \le \frac{\lambda^2}{2} \sigma^2.$$

If we define

$$\hat{f}_t = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{s=1}^t \left(f(x_s, a_s) - r_s \right)^2,$$

and

$$\mathcal{F}_t = \left\{ f \in \mathcal{F} : \sum_{s=1}^t \left(f(x_s, a_s) - \hat{f}(x_s, a_s) \right)^2 \le \beta_t^2 \right\},\$$

where

$$\beta_t^2 = \inf_{\epsilon > 0} [9\epsilon t(\sigma + 2\epsilon) + 12\sigma^2 \ln (2N(\epsilon, \mathcal{F}, \|\cdot\|_{\infty}) / \delta]$$

Then with probability at least $1 - \delta$:

$$\sum_{t=2}^{T} \left[f_*\left(x_t\right) - f_*\left(x_t, a_t\right) \right] \le \sqrt{\mathrm{EC}(\epsilon, \mathcal{F}, T) \left(\epsilon T + 4\sum_{t=2}^{T} \beta_{t-1}^2\right)}.$$

Proof. We have

$$f_*(x_t) - f_*(x_t, a_t) = f_*(x_t) - f_t(x_t) + f_t(x_t, a_t) - f_*(x_t, a_t) \leq f_t(x_t, a_t) - f_*(x_t, a_t),$$

where we use $f_t(x_t) = f_t(x_t, a_t)$ as a_t is greedy with respect to f_t and the inequality is due to optimism of f_t . It follows that

$$\sum_{t=2}^{T} \left[f_* \left(x_t \right) - f_* \left(x_t, a_t \right) \right]$$

$$\leq \sum_{t=2}^{T} \left[f_t \left(x_t, a_t \right) - f_* \left(x_t, a_t \right) \right]$$

$$\leq \sqrt{\operatorname{EC}(\epsilon, \mathcal{F}, T) \sum_{t=2}^{T} \left(\epsilon + \sum_{s=1}^{t-1} \left| f_t \left(x_s, a_s \right) - f_* \left(x_s, a_s \right) \right|^2 \right)}$$

$$\leq \sqrt{\operatorname{EC}(\epsilon, \mathcal{F}, T) \left(\epsilon T + 4 \sum_{t=2}^{T} \beta_{t-1}^2 \right)},$$

where the last inequality follows from

$$\sum_{s=1}^{t-1} |f_t(x_s, a_s) - f_*(x_s, a_s)|^2$$

$$\leq 4 \sum_{s=1}^{t-1} \left[\left| f_t(x_s, a_s) - \hat{f}_{t-1}(x_s, a_s) \right|^2 + \left| f_*(x_s, a_s) - \hat{f}_{t-1}(x_s, a_s) \right|^2 \right] \leq 4\beta_{t-1}^2.$$

as $f_t, f_* \in \mathcal{F}_t$. It remains to determine the value of β_t^2 and to show that the sequence ensures 70 optimism. This follows from standard ridge regression analysis and we omit it here.

71 5.2 Estimating Eluder Coefficient

Lemma 5. Consider a RKHS \mathcal{H} with feature representation $f(x, a) = w \cdot \psi(x, a)$ for all $f \in \mathcal{H}$ and $||f||_{\mathcal{H}} = ||w||_2$. Assume that $||f - f_*||_{\mathcal{H}} \leq B$ for all $f \in \mathcal{F} \subset \mathcal{H}$ and $\psi(x, a) = [\psi_j(x, a)]_{j=1}^{\infty}$. Given any $\epsilon' > 0$, we also denote

$$d(\epsilon') = \min\left\{ |S| : \sup_{x,a} \sum_{j \notin S} (\psi_j(x,a))^2 \le \epsilon' \right\},\$$

and $\|\psi(x,a)\|_2 \leq B'$. If $|f - f_*| \leq M$ for all $f \in \mathcal{F}$, then we have

$$\operatorname{EC}(\epsilon, \mathcal{F}, T) \le (1 + \epsilon^{-1})d(\epsilon B^{-2})\ln\left(1 + \frac{T(BB')^2}{d(\epsilon B^{-2})\epsilon}\right).$$
(5.1)

In particular, if \mathcal{H} is d-dimensional for a finite d, then we have

$$\operatorname{EC}(M^2, \mathcal{F}, T) \le 2d \ln \left(1 + 4T (BB'/M)^2 / d \right).$$

72 **References**

- 73 Abbasi-Yadkori, Y., Pál, D., & Szepesvári, C. (2011). Improved algorithms for linear stochastic
- ⁷⁴ bandits. Advances in neural information processing systems, 24.
- ⁷⁵ Chu, W., Li, L., Reyzin, L., & Schapire, R. (2011). Contextual bandits with linear payoff functions.
- ⁷⁶ In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
- 77 (pp. 208–214).: JMLR Workshop and Conference Proceedings.