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Abstract5

Estimation of the generalization gap between the empirical risk and population risk is one6

of the most important problems in the field of learning theory. The most prominent approach7

for this problem is based on uniform convergence whose bound is related to some complexity8

measure of the underlying function space. Since such an analysis largely ignores the way the9

learning algorithm searches the model space, it can be sub-optimal for a variety of learning10

algorithms. Stability analysis is another classical approach to derive generalization bound for11

stable learning algorithms due to Bousquet and Elisseeff (2002). In this paper, we study the12

high-probability generalization bound for γ-uniformly stable learning algorithms and present13

an alternative analysis to derive a bound that matches the best existing result of Bousquet14

et al. (2020) without any additional assumption. We further extend our analysis with structure15

information to obtain faster rates and show that our method can have some potential advantages16

in these cases.17

1 Introduction18

A key issue in learning theory is the estimation of the generalization gap between the empirical19

risk evaluated at the training set Sn and population risk evaluated in terms of the data distribution20

D. Among the approaches that have been proposed to this problem, one of the most popular is21

based on uniform convergence of all models f ∈ F . This theory relates the generalization gap to22

the complexity of underlying hypothesis space (see Section 2 for a brief introduction). However, in23

practical applications, one may not search for the entire model space. For instance, SGD searches24

the parameter space Ω ⊂ Rd along a line. Therefore, uniform convergence over the whole space25

can be non-optimal in this case because the way the learning algorithm A searches the model space26
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is largely ignored by the uniform convergence analysis. In this paper, we consider another tool,27

referred to as stability analysis to estimate the generalization gap of the learned model (Bousquet28

and Elisseeff, 2002; Feldman and Vondrak, 2018, 2019; Bousquet et al., 2020).29

Stability of a learning algorithm refers to the changes in the output of the system when we change30

the input training dataset Sn. Intuitively, a learning algorithm is said to be stable if the learned31

model does not change ”much” when the training dataset is modified. Here, the word ”much” is32

usually characterized by putting an upper bound for the change. As a motivating example, result33

from VC-theory is useless for k-Nearest Neighbors algorithm (k-NN) whose VC-dimension is known34

to be infinite. On the contrary, the k-NN algorithm is very stable because of its ”locality” and its35

stability is employed to derive meaningful generalization bound (Rogers and Wagner, 1978).36

The stability analysis has been applied to various learning algorithms, including the empirical37

risk minimization (ERM) method with strongly convex losses (Bousquet and Elisseeff, 2002; Shalev-38

Shwartz et al., 2010), stochastic gradient descent (SGD) with convex and smooth losses (Hardt et al.,39

2016), and Gibbs distribution with non-convex losses. It was also conjectured by Hardt et al. (2016)40

that stability can be used to understand the generalization properties of neural network. Despite41

a handful of seminal works along the line, the most existing bounds are on the expectation or the42

second moment of the generalization gap over the random choice of the dataset. The seminal work43

Feldman and Vondrak (2019) significantly improve the high-probability bound for uniformly-stable44

learning algorithms based on techniques about range reduction and dataset size reduction.45

In this paper, we present an alternative approach to derive the high-probability generalization46

bound without additional assumptions based on controlling the logarithmic moment generating47

function. Under the same boundedness assumption, the bound we obtain matches that of Bousquet48

et al. (2020). Then, we rewrite the analysis of Bousquet et al. (2020) by directly controlling the49

logarithmic moment generating function to obtain a result that is possibly more flexible to use.50

Moreover, we extend our analysis by additional structure information to obtain faster rates and51

show that our method can have some potential advantages in these cases.52

2 Preliminaries53

In this section, we first define the notion of uniform stability, which is first introduced by54

Bousquet and Elisseeff (2002), and then formulate the problem. Then, we review the results of55

uniform convergence and results of stability analysis that are closely related to our work.56

2.1 Problem Formulation57

Suppose that we are interested in a specific joint probability distribution D over the input space
X and the ouput space Y. We assume that we are given a training set Sn consisting of n i.i.d.
samples drawn from D. We consider an arbitrary randomized learning algorithm A that maps the
training set Sn to a model f ∈ F . Given a loss function ℓ : F × Y → R that measures the loss of
model f ∈ F on point z ∈ Z, with slight abuse of notation, we define the population risk of A(Sn)
as

ℓ(A(Sn),D) := EZ∼Dℓ(A(Sn), Z). (2.1)
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While we cannot compute the population risk directly, we can compute the empirical risk over the
training set Sn by:

ℓ(A(Sn),Sn) := 1
n

n∑
i=1

ℓ(A(Sn), Zi). (2.2)

Our goal is to estimate the generalization gap between the population risk and empirical risk:

∆D−S(ℓ(A)) := ℓ(A(Sn),D) − ℓ(A(Sn),Sn). (2.3)

Throughout the rest of this paper, we make the following boundedness assumption.58

Assumption 1 (Boundedness). We assume that ℓ(f, z) ∈ [0, 1] for all functions f ∈ F and point59

z ∈ Z.60

2.2 Uniform Convergence61

Although we consider a general A here, it is useful to consider A to be the Empirical Risk Min-
imization (ERM) method for a clearer presentation. Formally, ERM method finds the minimizer
of the empirical risk by

f̂ := argmin
f∈F

ℓ(f,Sn). (2.4)

Let f∗ be the minimizer of the population risk. We can derive an upper bound for the excess risk
as follows:

ℓ(f̂ ,D) − ℓ(f∗,D) =
(
ℓ(f̂ ,D) − ℓ(f̂ ,Sn)

)
︸ ︷︷ ︸

A

+
(
ℓ(f̂ ,Sn) − ℓ(f∗,Sn)

)
︸ ︷︷ ︸

B

+ (ℓ(f∗,Sn) − ℓ(f∗,D))︸ ︷︷ ︸
C

≤
(
ℓ(f̂ ,D) − ℓ(f̂ ,Sn)

)
+ (ℓ(f∗,Sn) − ℓ(f∗,D))

≤ 2 sup
f∈F

|ℓ(f,D) − ℓ(f,Sn)| .

(2.5)

We remark that we cannot directly apply concentration inequalities (e.g. Hoeffding’s inequality) to
(ℓ(f̂ ,D) − ℓ(f̂ ,Sn)) because f̂ depends on the dataset and f̂(Zi) are no longer independent of each
other. Here we are concerning a uniform convergence for all f ∈ F instead of a fixed one where
traditional law of large number applies. The prominent approach is based on a union concentration
over an ϵ-cover of F , which typically leads to the following bound:

sup
f∈F

|ℓ(f,D) − ℓ(f,Sn)| ≤ O

√log N(F , ϵ, ρ)
δ

1
n

 ,
where N(F , ϵ, ρ) is the ϵ-covering number of F with respect to some metric ρ. The bounds obtained62

through uniform convergence typically depend on the covering number, or more generally, some63

notion of the complexity of F . However, in practice, algorithms like SGD search a model parameter64

along a path which do not cover the entire model space F . Since the uniform convergence bounds65

largely ignore the way where the model is searched, the bounds can be non-optimal for a variety66
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of learning algorithms. See Section A for examples.67

2.3 Uniform Stability68

A different approach to derive generalization bound is based on stability analysis. We introduce69

the notion of algorithmic stability as follows (Bousquet and Elisseeff, 2002; Feldman and Vondrak,70

2018, 2019; Bousquet et al., 2020).71

Definition 1 (Uniform Stability). An algorithm A is γ-uniformly stable if for all Sn and S ′
n that

differ by only one element, it holds that

sup
z∈Z

[
EAℓ

(
A
(
S ′

n

)
, z
)

− EAℓ (A (Sn) , z)
]

≤ γ, (2.6)

where EA is taken with respect to the randomness of A.72

Stability can be used to derive expected generalization bound for a learning algorithm A. In par-73

ticular, we have the following theorem from Bousquet and Elisseeff (2002). The proof is presented74

here for completeness.75

Theorem 1 (Expected generalization bound by stability). If a learning algorithm A is γ-uniformly
stable, then we have

ESnEAℓ (A (Sn) ,D) ≤ ESnEAℓ (A (Sn) ,Sn) + γ. (2.7)

Proof. Consider two independent datasets Sn = {Z1, · · · , Zn} and S ′
n = {Z ′

1, · · · , Z ′
n}. Let

S(i)
n = {Z1, · · · , Zi−1, Zn+1, Zi+1, · · · , Zn}

where we replace Zi with Zn+1. Then it holds that

ESnEAℓ (A (Sn) ,D) − ESnEAℓ (A (Sn) ,Sn)

= 1
n

n∑
i=1

EZn+1ESnEAℓ
(
A
(
S(i)

n

)
, Zi

)
− 1
n

n∑
i=1

ESnEAℓ (A (Sn) , Zi)

= 1
n

n∑
i=1

EZn+1ESn

[
EAℓ

(
A
(
S(i)

n

)
, Zi

)
− EAℓ (A (Sn) , Zi)

]
≤ γ

where the first equality is because Zi is independent of S(i)
n so the distribution of ℓ(A(S(i)

n ), Zi) is76

the same as that of ℓ(A(Sn), Z) with Z ∼ D.77

This shows that the expected population risk of a γ-uniformly stable algorithm is bounded78

by the expected empirical risk plus the stability parameter γ where the expectation is for the79

training set Sn. In this paper, however, we are mainly concerning the high-probability bound80

of the generalization error that is generally worse than the expected generalization bound. We81

summarize existing results as follows.82
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Bousquet and Elisseeff (2002) establishes an upper bound of

∆D−S(ℓ(A)) ≤ O

(
γ
√
n log(1/δ) +

√
log(1/δ)/n

)
,

which holds with probability at least 1− δ. We note that this high-probability bound is larger than
the expected generalization error at least by a factor of

√
n log(1/δ). This bound is tight when γ

scales as 1
n but becomes vacuous when γ ≥ 1/

√
n. A stronger bound is proved by Feldman and

Vondrak (2018) as
∆D−S(ℓ(A)) ≤ O

(√
(γ + 1/n) log(1/δ)

)
.

This bound is non-vacuous for any non-trivial stability parameter γ = o(1). Moreover, the overhead
of the high-probability bound as compared to the bound in expectation is reduced from

√
n to n1/4.

Feldman and Vondrak (2019) further improves the high-probability bound to

∆D−S(ℓ(A)) ≤ O

(
γ
(
log2(n) + log(n) log(1/δ)

)
+
√

log(1/δ)/n
)
.

Remarkably, this bound implies that algorithms with γ = O(1/
√
n) enjoy essentially the same

generalization error guarantees up to some logarithmic factors as algorithms that output a fixed
function, which has uniform stability 0. Moreover, the upper bound is optimal whenever

γ ≤
√

log(1/δ)√
n log(n/δ) log(n) ,

while in Bousquet and Elisseeff (2002); Feldman and Vondrak (2018), similar guarantees are
achieved only when γ = O(1/n). Bousquet et al. (2020) further improve the bound to

∆D−S(ℓ(A)) ≤ O

(
γ log(n) log(1/δ) +

√
log(1/δ)/n

)
,

whose analysis is based on moment bound which implies generalization bound. We remark that83

the analysis is also much more straightforward as compared to Feldman and Vondrak (2019).84

3 Main Results85

In this section, we present the main result of this paper.86

3.1 Main Result87

Theorem 2. Assume algorithm A is γ-uniformly stable. Let Sn be a dataset of n i.i.d. samples
drawn from D. Then, with probability at least 1 − δ, it holds that

∆D−S(ℓ(A)) ≤ O (γ log(n) log(1/δ) + ϵn(δ)) , (3.1)
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where ϵn(δ) comes from the concentration of

1
n

n∑
i=1

[E
S

(i)
n
EAℓ

(
A
(
S(i)

n

)
, Zi

)
− E

S
(i)
n
EAℓ

(
A
(
S(i)

n

)
,D
)
] ≤ ϵn(δ)

In particular, due to the boundedness assumption, the Hoeffding’s inequality implies that

∆D−S(ℓ(A)) ≤ O

(
γ log(n) log(1/δ) +

√
log(1/δ)/n

)
. (3.2)

Note that under Assumption 1, the obtained bound matches that of Bousquet et al. (2020) and88

thereby matches the lower bound up to logarithmic factor (Liu and Lu, 2020; Bousquet et al., 2020).89

When additional structural assumption is available, our result may be easier to apply because the90

analysis of ϵn(δ) is separate and can be controlled by any method.91

4 Proof of Theorem 2: The First Method by Moment Generating92

Function93

We prove Theorem 2 in this subsection.94

Lemma 1. Assume that g(Sn, z) is zero-mean with respect to z for all Sn, i.e.,

EZ∼Dg(Sn, Z) = 0.

Assume also that g(Sn, z) is an γ-uniformly stable function, i.e., for all z ∈ Z and S′
n that differ

from Sn by one element, we have ∣∣g (Sn; z) − g
(
S ′

n; z
)∣∣ ≤ γ.

Let
ḡ (Sn+1) = 1

n

n∑
i=1

[
g
(
S(i)

n ;Zi

)
− ES(i)

n+1
g
(
S(i)

n ;Zi

)]

where S
(i)
n := {Z1, · · · , Zi−1, Zn+1, Zi+1, · · · , Zn}. Then, if the samples of Sn+1 are i.i.d. drawn

from D, it holds that
lnESn+1 exp ((λ/L)ḡ (Sn+1)) ≤ 0.3λ2γ2 + 6λ4γ4

where L = ⌈log2 n⌉. This implies that with probability. at least 1 − δ, we have

ḡ (Sn+1) ≤ Lγ + 2.5Lγ ln(1/δ)

We now invoke the above lemma to prove the main theorem.95

Proof of Theorem 2. We define

g (Sn; z) = EAℓ (A (Sn) ,D) − EAℓ (A (Sn) , z) ,
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which is mean-zero w.r.t. z. For all z ∈ Z, we have

|g(Sn, z) − g(S ′
n, z)| ≤ |EAℓ (A (Sn) ,D) − EAℓ

(
A
(
S ′

n

)
,D
)

| + |EAℓ (A (Sn) , z) − EAℓ
(
A
(
S ′

n

)
, z
)

|
≤ 2γ,

where we use A is γ-uniformly stable. Therefore, g(Sn, z) is 2γ-uniformly stable and it holds that

ḡ (Sn+1) = 1
n

n∑
i=1

[
g
(
S(i)

n ;Zi

)
− ES(i)

n+1
g
(
S(i)

n+1;Zi

)]
≤ 2⌈log2 n⌉γ + 5⌈log2 n⌉γ ln(2/δ), (4.1)

with probability at least 1 − δ/2 by Lemma 1. Specifically, we can write ḡ(Sn+1) as

ḡ(Sn+1) = 1
n

n∑
i=1

[EAℓ
(
A
(
S(i)

n

)
,D
)

− EAℓ
(
A
(
S(i)

n

)
, Zi

)
︸ ︷︷ ︸

(i)

− E
S

(i)
n+1

EAℓ
(
A
(
S(i)

n

)
,D
)

+ E
S

(i)
n+1

EAℓ
(
A
(
S(i)

n

)
, Zi

)
︸ ︷︷ ︸

(ii)

].

We note that the analysis of (ii) is separate and since E
S

(i)
n
EAℓ

(
A
(
S(i)

n

)
, Zi

)
are independent

of each other, it is simply a concentration problem with bound ϵ(δ). In particular, due to the
boundedness assumption, we can apply Hoeffding’s inequality to obtain that

1
n

n∑
i=1

[E
S

(i)
n
EAℓ

(
A
(
S(i)

n

)
, Zi

)
− E

S
(i)
n
EAℓ

(
A
(
S(i)

n

)
,D
)
] ≤

√
log(2/δ)

2n , (4.2)

with probability at least 1 − δ/2. By a union bound, we conclude that with probability at least
1 − δ, it holds that

EAℓ (A (Sn) ,D) ,

≤ 1
n

n∑
i=1

EZ∼D
[
EAℓ

(
A
(
S(i)

n

)
;Z
)]

+ γ,

≤ 1
n

n∑
i=1

[
EAℓ

(
A
(
S(i)

n

)
;Zi

)]
+ 2 ⌈log2 n⌉ γ(1 + 2.5 ln(2/δ)) +

√
log(2/δ)/(2n) + γ,

≤ 1
n

n∑
i=1

[EAℓ (A (Sn) ;Zi)] + 2 ⌈log2 n⌉ γ(1 + 2.5 ln(2/δ)) +
√

log(2/δ)/(2n) + 2γ,

where the first inequality and the third inequality use A is γ-uniformly stable, and the second96

inequality is because Eqn. (4.1) and (4.2).97
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5 Deriving Generalization Bound by Moment98

We present the analysis from Bousquet et al. (2020) in this section with modification for a99

clear presentation. We define ∥Y ∥p = (E|Y |p)1/p and ∥Y ∥p (X) = (E[|Y |p|X])1/p We start with100

presenting the key steps in their proof.101

Lemma 2 (Equivalence of tails and moments). Suppose that

|Y | ≤ a
√

log(e/δ) + b log(e/δ),

with probability at least 1 − δ for any δ ∈ (0, 1) for some a, b > 0. Then, for any p ≥ 1, we have

∥Y ∥p ≤ 3√
pa+ 9pb.

And vice versa, if ∥Y ∥p ≤ 3√
pa+9pb for all p ≥ 1, then for any δ ∈ (0, 1), we have with probability

at least 1 − δ,

|Y | ≤ e

(
a

√
log

(
e

δ

)
+ b log

(
e

δ

))
.

We also need the following Concentration inequality for the function with bounded difference102

property.103

Lemma 3 (McDiarmid’s inequality). Let Xi be independent random variables and f : X n → R
satisfy the bounded difference property:∣∣f (x1, . . . , xn) − f

(
x1, . . . , xi−1, x

′
i, xi+1, . . . , xn

)∣∣ ≤ γ.

Then, it holds that
∥f (X1, . . . , Xn) − Ef (X1, . . . , Xn)∥p ≤ 2√

npγ.

In particular, if Xi ∈ [0, 1] and EXi = 0, we have∥∥∥∥∥
n∑

i=1
Xi

∥∥∥∥∥
p

≤ 2√
np.

5.1 Decomposition of the Generalization Error104

According to Lemma 2, we aim to derive an upper bound for the p-th moment of the random
variables. To be specific, we define

gi = gi(Sn) = EZ′
i

(
ℓ(A(S(i)),D) − ℓ(A(S(i)), Zi)

)
.

Then, we have the following results.105
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Theorem 3 (Bousquet et al. (2020)). We aim to prove that for all p ≥ 2, we have∥∥∥∥∥
n∑

i=1
gi(Z)

∥∥∥∥∥
p

≤ 12
√

2pnβ ⌈log2 n⌉ + 4M√
pn.

Under the boundedness assumption, it implies that

ℓ(A(Sn),D) ≤ ℓ(A(Sn),Sn) ≤ O

(
γ log(n) log(1/δ) +

√
n log(1/δ)

)
.

Sketch proof of Theorem 3. We start with a similar decomposition as in the proof of Theorem 1:

EAℓ (A (Sn) ,D) − EAℓ(A(Sn),Sn)

≤ 1
n

n∑
i=1

[
EZ′

i
EAℓ

(
A
(
S(i)

n

)
; D
)]

− 1
n

n∑
i=1

[
EZ′

i
EAℓ(A(S(i)

n );Zi)
]

+ 2γ,

= 1
n

n∑
i=1

gi + 2γ.

It remains to derive an high-probability upper bound for
∑n

i=1 gi. By Lemma 2, it suffices to control
the p-th moments of

∑n
i=1 gi. W.L.O.G., we assume that n = 2k. Otherwise, we can add extra

null samples, increasing the number of terms by at most two times. We construct a sequence of
partitions of the dataset Sn: B0,B1, · · · ,Bk as follows:

B0 = {{1}, {2}, · · · , {2k}}, B1 = {{1, 2}, {3, 4}, · · · , {2k − 1, 2k}}, Bk = {{1, 2, · · · , 2k}}

In other words, to get Bl from Bl+1, we split each subset of Bl+1 into two equal parts. By construc-
tion, we have Bk = 1, |B0| = 2k, and |Bl| = 2k−l. For each l ∈ [k] (index of partitions), and each
i ∈ [n] (index of sample), we define Bl(i) as the subset that contains i. For instance, B0(i) = {i}
and Bk(i) = {1, · · · , n}. We also define

gl
i = E[gi|Zi, Z[n]/Bl(i)],

where we take expectation with all the samples in the subset containing i at partition Bl, except
for i. We have

gi − E[gi|Zi] = g0
i − gk

i =
k−1∑
l=0

gl
i − gl+1

i .

Therefore, by triangle inequality, we have∥∥∥∥∥
n∑

i=1
gi

∥∥∥∥∥
p

≤
∥∥∥∥∥

n∑
i=1

E [gi | Zi]
∥∥∥∥∥

p︸ ︷︷ ︸
(i)

+
k−1∑
l=0

∥∥∥∥∥
n∑

i=1
gl

i − gl+1
i

∥∥∥∥∥
p︸ ︷︷ ︸

(ii)

.

Then, we control (i) and (ii) to fit the framework of Lemma 2.106
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Bounding (i). We remark that

1
n

n∑
i=1

E[gi|Zi] = 1
n

n∑
i=1

[E
S

(i)
n
EAℓ

(
A
(
S(i)

n

)
, Zi

)
− E

S
(i)
n
EAℓ

(
A
(
S(i)

n

)
,D
)
]

is exactly the term we are concerning for ϵ(δ) in Theorem 2. By |E[gi|Zi]| ≤ 1 and E(E[gi|Zi]) = 0,
by Lemma 3, we have ∥∥∥∥∥

n∑
i=1

E [gi | Zi]
∥∥∥∥∥

p

≤ 4√
pn.

Bounding (ii). The analysis of (ii) is more involved. The key idea is the following decomposi-
tion:

k−1∑
l=0

∥∥∥∥∥
n∑

i=1
gl

i − gl+1
i

∥∥∥∥∥
p

≤
k−1∑
l=0

2k−j∑
j=1

∥∥∥∥∥∥∥
∑
i∈Bl

j

gl
i − gl+1

i

∥∥∥∥∥∥∥
p

.

We note that gl
i − gl+1

i only depends on Zi, Z[n]/Bl . In particular, it only depends on Bl through107

Zi. Conditioned on the samples outside Bl, i.e., Z[n]/Bl , they are independent and mean-zero.108

Therefore, we can apply the following lemma:109

Lemma 4. Let Xi be independent random variables with finite p-th moment for p ≥ 2. Then,

∥∥∥∥∥
n∑

i=1
Xi

∥∥∥∥∥
p

≤ 3
√

2np
(

1
n

n∑
i=1

∥Xi∥p
p

) 1
p

to obtain ∥∥∥∥∥∥
∑
i∈Bl

gl
i − gl+1

i

∥∥∥∥∥∥
p

p

(
Z[n]\Bl

)
≤
(

3
√

2p2l

)p 1
2l

∑
i∈Bl

∥∥∥gl
i − gl+1

i

∥∥∥p

p

(
Z[n]\Bl

)
, (5.1)

where we take p-power on both sides. It is also not hard to see gl
i preserves the bounded difference

property. We have ∥∥∥gl
i − gl+1

i

∥∥∥
p

(
Bl+1(i)/Bl(i)

)
≤ 2

√
p2lγ, ∀p ≥ 2

where we use Lemma 3 with n = 2l because |Bl+1(i)/Bl(i)| = 2l. It further holds that∥∥∥gl
i − gl+1

i

∥∥∥
p

= (EE[|gl
i − gl+1

i |p|Bl+1(i)/Bl(i)])1/p ≤ 2
√
p2lγ.

Combining this with Eqn.(5.1), and integrating w.r.t. Z[n]/Bl , we have∥∥∥∥∥∥
∑
i∈Bl

gl
i − gl+1

i

∥∥∥∥∥∥
p

≤ 3
√

2p2l × 2
√
p2lγ = 6

√
2p2lγ.

10



Therefore, by triangle inequality, we have∥∥∥∥∥∥
∑
i∈[n]

gl
i − gl+1

i

∥∥∥∥∥∥
p

≤
∑

Bl∈Bl

∥∥∥∥∥∥
∑
i∈Bl

gl
i − gl+1

i

∥∥∥∥∥∥
p

≤ 2k−l × 6
√

2p2lγ = 6
√

2p2kγ ≤ 12
√

2pnγ.

It follows that∥∥∥∥∥
n∑

i=1
gi

∥∥∥∥∥
p

≤
∥∥∥∥∥

n∑
i=1

E [gi | Zi]
∥∥∥∥∥

p

+
k−1∑
l=0

∥∥∥∥∥
n∑

i=1
gl

i − gl+1
i

∥∥∥∥∥
p

≤ 4√
pn+ 12

√
2pnγ⌈log2 n⌉.

This implies the desired generalization bound.110

6 Proof of Theorem 2 by Moment Generating Function111

After reading the paper Bousquet et al. (2020), we realize that in addition to the dataset splitting
scheme, the mathematical tools used in our proof and theirs are also different, i.e., the moment
generating function and the moments condition. In this section, we rewrite the proof provided in
Section 5 where we directly control the moment generating function instead of the moments. We
use the same notation as Section 5. Recall that

n∑
i=1

gi =
n∑

i=1
E [gi | Zi]︸ ︷︷ ︸

(i)

+
k−1∑
l=0

n∑
i=1

gl
i − gl+1

i︸ ︷︷ ︸
(ii)

.

We know that (i) ≤ nϵn(δ) with high probability so it suffices to bound (ii).112

Alternative proof of Theorem 2. Observe that

gl+1
i (Zi, Z[n]/Bl+1

i
) = E[gl

i(Zi, Z[n]/Bl(i))|Zi, Z[n]/Bl+1(i)],

that is, the expectation is taken w.r.t. the variables Zj , j ∈ Bl+1(i)/Bl(i). We obtain the uniform
bound

lnE exp(λ
∑

i∈∈Bj
l

gl
i − gl+1

l ) = 2l lnE exp(λ(gl
i − gl+1

i )) ≤ λ222lγ2/8,

where the first equality is due to gl
i − gl+1

i for i ∈ Bl depends only on Zi, Z[n]/Bl+1(i), the terms are
independent and zero mean conditioned on Z[n]/Bl . The first inequality is due to the McDiarmid’s
inequality conditioned on Zi, Z[n]/Bl+1(i) because gl

i preserves the bounded differences property (by

11



γ) as the function gi. We then have

lnE exp(λ
k−1∑
l=0

2k−l∑
j=1

∑
i∈Bj

l

gl
i − gl+1

i ) ≤1
k

k−1∑
k=0

lnE exp(λk
2k−l∑
j=1

∑
i∈Bj

l

gl
i − gl+1

i )

≤1
k

k−1∑
k=0

1
2k−l

2k−l∑
j=1

lnE exp(λk2k−l
∑

i∈Bj
l

gl
i − gl+1

i )

≤λ2k222k−2l22lγ2/8
=n2(log2 n)2λ2γ2/8,

where in the first and second inequalities we use Jesen’s Inequality. The last inequality is due to
k = log2 n. It follows that

lnP
(

k−1∑
l=0

n∑
i=1

gl
i − gl+1

i ≥ n log2 n(1 + ϵ′)γ
)

≤ n2(log2 n)2λ2γ2/8 − λn log2 n(1 + ϵ′)γ.

Taking λ = c
n log nγ with 0 < c < 1, we obtain that

lnP
(

k−1∑
l=0

n∑
i=1

gl
i − gl+1

i ≥ n log2 n(1 + ϵ′)γ
)

≤ c2/8 − c− cϵ′ ≤ −cϵ′.

Setting δ/2 = exp(−cϵ′), we obtain that

k−1∑
l=0

n∑
i=1

gl
i − gl+1

i < n log2 n(1 + 1
c

ln 2
δ

)γ

with probability at least 1 − δ/2.
Putting (i) and (ii) together, we have

n∑
i=1

gi ≤
n∑

i=1
E [gi | Zi] +

k−1∑
l=0

n∑
i=1

gl
i − gl+1

i

≤nϵn(δ) + n log2 n(1 + 1
c

ln 2
δ

)γ

with probability at least 1 − δ. This implies the desired theorem.113

7 Extension with Realizability114

In this subsection, we show that our analysis can be easily generalized with additional structural115

assumption to obtain faster rates.116

Corollary 4. Suppose that the learning algorithm A is γ = 1
n -uniformly stable and the problem is

12



realizable in the sense that for any Sn ∈ Zn, we have

EAℓ(A(Sn),Sn) ≤ log2(n) log(2/δ)
n

,

Then, with probability at least 1 − δ, we have

∆D−S(ℓ(A)) ≤ O

( log(n) log(1/δ)
n

)
. (7.1)

Proof. We show that under the realizability condition, we can obtain a faster rate of ϵn(δ). We use
the short-hand notations: µ = E

S
(i)
n
EAℓ

(
A
(
S(i)

n

)
,D
)
, and X̄n = 1

n

∑n
i=1 ES

(i)
n
EAℓ

(
A
(
S(i)

n

)
, Zi

)
.

We will use the multiplicative form of Chernoff bound:

X̄n < µ+

√
2µ log(2/δ)

n
+ log(2/δ)

3n , (7.2)

which holds with probability at least 1 − δ/2. Therefore, it suffices to bound µ. By the expected
generalization bound in Eqn. (2.7), we have

µ ≤ ESnEAℓ(A(Sn),Sn) + γ ≤ log2(n) log(2/δ)
n

+ 1
n

≤ 2 log2(n) log(4/δ)
n

,

where we use the realizability condition in the second inequality. Therefore, we have

X̄n − µ ≤ 3 log(n) log(4/δ)
n

.

According to Theorem 2, we know that with probability at least 1 − δ, it holds that

∆D−S(ℓ(A)) ≤ O( log(n) log(1/δ)
n

).

117

8 Conclusion118

In this paper, an alternative analysis for the uniformly stable algorithms is presented. The119

obtained bound matches the best existing high-probability generalization bound of Bousquet et al.120

(2020). Furthermore, we extend our analysis with realizability condition to obtain a sharper bound.121

Our analysis can have advantages in some cases with additional structure information.122
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A Examples140

In this section, we apply our bounds to several learning algorithms that are known to stable.141

The detailed proofs are deferred to the Appendix due to space limit.142

Regularized Empirical Risk Minimization. (Bousquet and Elisseeff, 2002; Shalev-Shwartz
et al., 2010) We consider a general ERM method on a closed convex parameter space Ω for convex
objectives. The empirical risk now is evaluated with ℓ̄(w, z) = ℓ(w, z)+h(w) where h(w) ≥ 0 serves
as a regularizer. We assume that ℓ(w, z) is G(z)-Lipschitz in w and the empirical loss function
ℓ̄(w, z) is λ-strongly convex. Then, the regularized ERM defined as

A(Sn) := argmin
w∈Ω

ℓ̄(w,Sn), (A.1)

is uniformly stable with parameter

γ = 2(supz∈Z G(z))2

λn
.

Stochastic Gradient Descent (SGD). In many applications, one may run SGD for finite
iterations without converging to the minimum solution of ERM. In this case, it is usually much
easier to derive generalization bound by stability analysis (Hardt et al., 2016). We make the same
assumptions for ℓ̄(w,Sn) and ℓ(w, z) as in the regularized ERM example. We define b0 = 0, and

bt = (1 − ηtλ)bt−1 + 2ηt

n
(sup
z∈Z

G(z))2,∀t ≥ 1.

Then, after t iterations, SGD is γ = bt-uniformly stable.143

Gibbs Distribution. We consider a posterior sampling algorithm, namely, Gibbs Distribution
for non-convex objective function. The algorithms will sample a w ∈ Ω from the following posterior
distribution:

p(w|Sn) ∝ p0(w) exp(−β
∑

z∈Sn

ℓ(w,Z)), (A.2)

where β > 0 is a tuning parameter. If we assume that supw∈Ω ℓ(w, z) − infw∈Ω ℓ(w, z) ≤ M for all144

z ∈ Z, then Gibbs Distribution is γ = (e2βM − 1)M -uniformly stable.145

B Proof of Lemma 1146

We need the following lemmas.147

Lemma 5. Consider any functions g̃(Z) where S = [Z1, · · · , Zm] contains m i.i.d. samples from
D. Let S(i) = [Z1, · · · , Zi−1, Z

′
i, Zi+1, · · · , Zn] where S ′ contains m i.i.d. samples from D that are

independent of Z. Define

V+(S) = ES′

[
n∑

i=1

(
g̃(S) − g̃

(
S(i)

))2
I
(
g̃(S) > g̃

(
S(i)

)
| S
]
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Assume that there exists positive constants a and b such that

V+(S) ≤ ag̃(S) + b,

then for λ ∈ (0, 1/a):

logES exp(λg̃(S)) ≤ λES g̃(S) + λ2

1 − aλ
(aEg̃(S) + b).

Lemma 6. Let f : Rn → R and {Xi, X
′
i} be 2n i.i.d. random variables, then

Var[f(X)] ≤ 1
2E

n∑
i=1

(
f(X) − f

(
X(i)

)2
)

where X = [X1, · · · , Xn] and X(i) = [X1, · · · , Xi−1, X
′
i, Xi+1, · · · , Xn].148

Proof of xx. For notation simplicity, we assume g(Sn, z) is invariant to the order of elements in Sn.
The analysis itself holds without this assumption. Consider a fixed Sn+1 = {Z1, · · · , Zn+1}. With
slight abuse of notaiton, we define for i ≤ m ≤ n,

S(i)
m = {Z1, · · · , Zi−1, Zn+1, zi+1, · · · , Zm},

and we define S(i)
n = S(i)

n+1. Now for all 1 ≤ m′ ≤ m ≤ n, we define

ḡm′,m (Sn+1) = 1
m′

m′∑
i=1

[
g
(
S(i)

n+1;Zi

)
− ES(i)

m
g
(
S(i)

n+1;Zi

)]
.

Then, we have ḡ(Sn+1) = ḡn,n(Sn+1). Given m′ ≤ m ≤ n, we denote by S̃m′ a uniformly selected
subset of Sm of size m′. By symmetry, we have

ḡm,m (Sn+1) = 1
m

m∑
i=1

[
g
(
S(i)

n+1;Zi

)
− ES(i)

m
g
(
S(i)

n+1;Zi

)]
= ES̃m′

1
m′

∑
Zi∈S̃m′

[
g
(
S(i)

n+1;Zi

)
− ES(i)

m
g
(
S(i)

n+1;Zi

)]

This is because for each i, we have
Cm′−1

m−1
Cm′

m

1
m′ = 1

m
.
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Then, we have

lnESn+1 exp
(
λ′ḡm,m (Sn+1)

)
≤ lnESn+1ES̃m′ exp

 λ′

m′

∑
Zi∈S̃m′

[
g
(
S(i)

n+1;Zi

)
− ES(i)

m
g
(
S(i)

n+1;Zi

)]
≤ lnESn+1 exp

(
λ′ḡm′,m (Sn+1)

)
,

(B.1)

where the first inequality uses Jensen’s inequality for exp(·) and the second inequality is because all
S̃m′ have identical distribution. It can be verified by definition (add and minus 1

m′
∑m′

i=1 ES(i)
m′
g
(
S(i)

n+1;Zi

)
)

that

ḡm′,m (Sn+1) = ḡm′,m′ (Sn+1) + 1
m′

m′∑
i=1

[
ES(i)

m′
g
(
S(i)

n+1;Zi

)
− ES(i)

m
g
(
S(i)

n+1;Zi

)]
.

We then apply the Jensen’s inequality applied to lnESn+1 exp(g(Sn+1)) w.r.t. g(·) to obtain for all
λ′ and ℓ > 1 that

lnESn+1 exp
(
λ′ḡm′,m (Sn+1)

)
≤ℓ− 1

ℓ
lnESn+1 exp

(
ℓ/(ℓ− 1)λ′ḡm′,m′ (Sn+1)

)
+ 1
ℓ

lnESn+1 exp

ℓλ′

m′

m′∑
i=1

[
ES(i)

m′
g
(
S(i)

n+1;Zi

)
− ES(i)

m
g
(
S(i)

n+1;Zi

)] .
(B.2)

Now we fix {Zm+1, · · · , Zn} and consider a function of Sm′+1,··· ,m} defined as follows:

g′ (Sm′+1,m

)
= lnESm′ exp

 λ

m′

m′∑
i=1

[
ES(i)

m′
g
(
S(i)

n+1;Zi

)
− ES(i)

m
g
(
S(i)

n+1;Zi

)] ,
where we note that is does not depend on Zn+1 due to the expectation w.r.t. Zn+1 over S(i)

m′ and
S(i)

m . (Note that we replace Zi with Zn+1 in them!) Conditioned on Sm′+1,m, Zi are independent
for i ≤ m′, so we have

g′ (Sm′+1,m

)
= m′ lnEZ exp

(
λ

m′

[
ESm′g (Sn;Z) − ESmg (Sn;Z)

])
.

See written note for details. Then, by uniform stability and telescope sum, we have[
ESm′g (Sn;Z) − ESmg (Sn;Z)

]
≤
(
m−m′) ϵ.
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We further assume that m ≤ 2m′ so that (m−m′)/m′ ≤ 1. It follows that

g′ (Sm′+1,m

)
=m′ lnEZ exp

(
λ

m′

[
ESm′g (Sn;Z) − ESmg (Sn;Z)

])
≤m′

[
EZ exp

(
λ

m′

[
ESm′g (Sn;Z) − ESmg (Sn;Z)

])
−

− λ

m′EZ

[
ESm′g (Sn;Z) − ESmg (Sn;Z)

]]
≤(λ)2

m′ ψ(0.4)EZ

(
ESm′g (Sn;Z) − ESmg (Sn;Z)

)2

︸ ︷︷ ︸
g′′(Sm′+1,m)

,

(B.3)

where we use log z ≤ z − 1 and EZg(Sn;Z) = 0 for all Sn in the first inequality and use ψ(z) =
(ez − z − 1)/z2 is increasing in z and

z = λ

m′

[
ESm′g (Sn;Z) − ESmg (Sn;Z)

]
≤ λ(m−m′)

m′ ϵ ≤ 0.4,

if λϵ ≤ 0.4. By Lemma 6, we have

ESm′+1,m
g′′ (Sm′+1,m

)
≤ 0.5

(
m−m′) ϵ2,

where the left-hand side is the variance of f(Sm′+1,m) and within each summand of right-hand side,
two terms only differ by one elements. Now we consider two sets Sm′+1,m and S ′

m′+1,m that differ
by only one element, we have(

g′′ (Sm′+1,m

)
− g′′

(
S ′

m′+1,m

))2

≤
(
2ϵEZ

∣∣∣[ESm′g (Sn;Z) − ESmg (Sn;Z)
]∣∣∣+ ϵ2

)2

≤5ϵ2g′′ (Sm′+1,m

)
+ 5ϵ4.

This corresponds to Lemma (5) with a = 5(m − m′)ϵ2 and b = (m − m′)ϵ4 (note we need to sum
from m′ + 1 to m, leading to (m−m′)). By Eqn. B.3, we have

lnESm′+1,m
exp

(
g′ (Sm′+1,m

))
≤ lnESm′+1,m

exp
(

(λ)2

m′ ψ(0.4)g′′ (Sm′+1,m

))

≤(λ)2

m′ ψ(0.4)ESm′+1,m
g′′ (Sm′+1,m

)
+ 2 (λ)4

(m′)2ψ(0.4)2
(
5
(
m−m′) ϵ2ESm′+1,m

g′′ (Sm′+1,m

)
+ 5

(
m−m′) ϵ4)
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with λlemma = λ2

m′ψ(0.4) where the second inequality uses Lemma 5 and

1 − a
λ2

m′ψ(0.4) ≥ 1 − 5(0.4)2ψ(0.4) ≥ 0.5

since λϵ ≤ 0.5. Combining this with ESm′+1,m
g′′ (Sm′+1,m

)
≤ 0.5 (m−m′) ϵ2, we have

lnESm′+1,m
exp

(
g′ (Sm′+1,m

))
= lnESn+1 exp

 λ

m′

m′∑
i=1

[
ES(i)

m′
g
(
S(i)

n+1;Zi

)
− ES(i)

m
g
(
S(i)

n+1;Zi

)]
≤0.3λ2ϵ2 + 6λ4ϵ4

where we use ψ(0.4) ≤ 0.58, (m−m′)/m′ ≤ 1 so

ψ(0.4)0.5 ≤ 3 and 2ψ(0.4)2 × [5 × 0.5 + 1
m′ 5] ≤ 6.

Now we consider a sequence 1 = m0 < m1 < · · · < mL = n where mℓ = min(2ℓ, n). Let λℓ = λ/ℓ

for ℓ > 0 and λ0 = λ (so (m−m′)/m′ ≤ 1). Then, we have

ℓ lnESn+1 exp (λℓḡmℓ,mℓ
(Sn+1))

≤ ℓ lnESn+1 exp
(
λℓḡmℓ−1,mℓ

(Sn+1)
)

≤ (ℓ− 1) lnESn+1 exp
(
λℓ−1ḡmℓ−1,mℓ−1 (Sn+1)

)
+ lnESn+1 exp

(
λ

mℓ−1

mℓ−1∑
i=1

[
ES(i)

mℓ−1
g
(
S(i)

n+1;Zi

)
− ES(i)

mℓ

g
(
S(i)

n+1;Zi

)])
≤ (ℓ− 1) lnESn+1 exp

(
λℓ−1ḡmℓ−1,mℓ−1 (Sn+1)

)
+ 0.3λ2ϵ2 + 6λ4ϵ4

where the first inequality is due to Eqn. (B.1); the second inequality comes from Eqn. (B.2) and
the last inequality uses the above result. Summing over ℓ = 1, · · · , L, we obtain

L lnESn+1 exp (λLḡ (Sn+1)) = lnESn+1 exp (λLḡmL,mL (Sn+1)) ≤ L0.3λ2ϵ2 + L6λ4ϵ4.

This implies the first desired bound. The second inequality follows from the Markov’s inequality
as follows. Considering ϵ′ > 0 and taking λ = 0.4/ϵ, we have

ln Pr
[
ḡ (Sn+1) ≥ L

(
1 + ϵ′

)
ϵ
]

≤
[
0.3λ2ϵ2 + 6λ4ϵ4 − (λ/L)L

(
1 + ϵ′

)
ϵ
]

≤ −0.4ϵ′.

Setting exp(−0.4ϵ′) = δ implies that w.p. at least 1 − δ, we have

ḡ(Sn+1) ≤ Lϵ+ 2.5Lϵ ln(1/δ).
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