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A NOTE ON RECENT ADVANCES IN RL WITH GENERAL
FUNCTION APPROXIMATION

ABSTRACT

-

1 TL;DR

• GEC reduces out-of-sample V1,ft to in-sample error estimation:
1 A low DEC: model-based + model-free;
2 An effective in-sample error estimator;
3 Handle the difference between V1,f and V ∗

1 ;

Reg(T ) ≲
[
dGEC ·

T∑
t=1

t−1∑
s=1

ℓs(f t)
]1/2

≤ γ

T∑
t=1

t−1∑
s=1

ℓs(f t)︸ ︷︷ ︸
New target: in-sample estimation

+
1

γ
· dGEC.

• DEC reduces out-of-sample V ∗
1 to another out-of-sample target:

1 A low DEC: model-based;
2 An effective online learning oracle;

EReg(T ) ≤
T∑

t=1

decHγ (M, µt)︸ ︷︷ ︸
Cost of transformation

+ γ ·
T∑

t=1

Eπt∼ptEM̂t∼µt

[
Dπt

(
M̂t||M∗)]

︸ ︷︷ ︸
New target: online learning

.

• DC/O-DEC reduces out-of-sample V1,ft to another optimistic out-of-sample target:
1 A low complexity measure: model-based + model-free;
2 An effective online learning oracle;
3 Handle the difference between V1,f and V ∗

1 .

EReg(T ) ≤
T∑

t=1

odecDγ (M, µt)︸ ︷︷ ︸
Cost of transformation

+ γ ·
T∑

t=1

Eπt∼ptEM̂t∼µt

[
Dπt

(
M̂t||M∗)− γ−1∆V1,M̂t

(x1)

]
︸ ︷︷ ︸

New target: online learning with feel-good term

.

2 INTRODUCTION

One of the core problem in reinforcement learning is to identify the minimal structural assumption
that permits sample-efficient learning. While the tabular MDP has been well studied, the minimax
regret bound of tabular setting depends on the number of state S. This suggests that MDPs with large
state space cannot be handled without further structural assumptions. Therefore, a line of works is
devoted to the function approximation setting where we approximate the value function, policy, or
model dynamic by an abstract hypothesis set H.

Motivated by the results from supervised learning, one may expect that (1) realizability (the true
model f∗ ∈ H) and (2) bounded statistical complexity (e.g., the covering number of H) are sufficient
for RL. Unfortunately, there exists a negative result, saying that learning a good policy is statistically
hard even though the following two conditions are satisfied:

• for all h ∈ [H], there exists θ∗h ∈ Rd such that Q∗
h(·, ·) = ϕ(·, ·)⊤θ∗h;
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• Constant gap: for all (h, s, a) ∈ [H]×S ×A, ∆h(s, a) := V ∗
h (s)−Q∗

h(s, a) ≥ ∆min > 0
(Intuitively speaking, there exists a gap between the best action and the second-best one so
learning is easier).

Therefore, we want to identify some natural additional structural assumption that permits sample-
efficient learning for RL with general function approximation. In particular, we are interested in the
following measures proposed recently:

• Decision-Estimation Coefficient (DEC) (Foster et al., 2021; 2022);
• Decoupling Coefficient (DC) (Zhang, 2022; Agarwal and Zhang, 2022);
• Generalized Eluder Coefficient (GEC) (Zhong et al., 2022).

For all the following discussions, we make the following standard realizability assumption.
Assumption 1 (Realizability). We assume that f∗ ∈ H.

Learning objective. We consider the regret minimization problem:

EReg(T ) =
T∑

t=1

Eft∼ptV ∗
1 (x1)− V πt

1 (x1).

Notation. In general, the hypothesis class can be either value-based one where we approximate the
optimal Q-value function or model-based one where we approximate the model dynamics. We will
use M ∈ M to replace H when the hypothesis is a model-based set. To describe the discrepancy of a
model M ∈ M, we use the notation V π

1,M (x1) to denote the value of policy π if M is the true model.
If we omit the superscript π, it means that we take π := πM . We also define the Bellman operator
and Bellman residual as follows:

Q∗
h(x, a) = (ThV ∗

h+1)(x, a) := rh(x, a) + Ex′∼Ph(·|x,a);

Eh(f, x, a) = Qh,f (x, a)− (ThVh+1,f )(xh, ah).
(1)

Sometimes we will use ζ = {(xh, ah, rh)}Hh=1 to denote a trajectory and we also write Eh(f, ζ),
meaning that we take xh, ah as the input. Given two distributions P and Q, we also define the
Hellinger distance as follows:

D2
H(P,Q) :=

∫ (√
dP−

√
dQ

)2
. (2)

3 GENERALIZED ELUDER COEFFICIENT (GEC)

In this section, we consider the function approximation by either a valued-based H or a model-based
H. To motivate the GEC, we start with the following value decomposition lemma from Jiang et al.
(2017).
Lemma 1 (Value Decomposition Lemma (Jiang et al., 2017)). For any algorithm that achieves
optimism such that V1,ft(x1) > V ∗

1 (x1), by the value decomposition lemma, we have

T∑
h=1

V ∗
1 (x1)− V

πft

1 (x1) =

T∑
h=1

H∑
h=1

Eπft

[
Eh

(
f t, xt

h, a
t
h

)]
−

(
V1,ft (x1)− V ∗

1 (x1)
)︸ ︷︷ ︸

∆V1,ft (x1)

≤
T∑

h=1

H∑
h=1

Eπft

[
Eh

(
f t, xt

h, a
t
h

)]
.

(3)

The last inequality is the main technical reason why we consider global optimism-based algorithms.
However, if we carefully look at the RHS of (3), we can see a “mismatch” between Goal and
Guarantee:

• Guarantee: f t is good on the historical dataset: Dt−1 = {ζ1, ζ2, · · · , ζt−1};
• Goal: f t performs well on the unseen ζt.
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Clearly, this requires certain “generalization” in an online manner so that a hypothesis consistent
with the historical data should perform well for the future. The GEC captures the hardness of such a
generalization, defined as follows.

Definition 1 (Generalized Eluder Coefficient (Zhong et al., 2022)). Given a hypothesis class H, a
discrepancy function ℓ = {ℓf}f∈H, an exploration policy class Πexp, and ϵ > 0, the generalized
eluder coefficient GEC(H, ℓ,Πexp, ϵ) is the smallest d (d ≥ 0) such that for any sequence of
hypotheses {f t}Tt=1:

T∑
h=1

H∑
h=1

Eπft

[
Eh

(
f t, xt

h, a
t
h

)]︸ ︷︷ ︸
test error

≤
[
d

H∑
h=1

T∑
t=1

( t−1∑
s=1

Eπexp(fs,h)ℓfs(f t, ζh)
)

︸ ︷︷ ︸
training error

]1/2
+ 2

√
dHT + ϵHT︸ ︷︷ ︸

burn-in cost

.

(4)

In general, we can take ϵ > 0 sufficiently small such that

T∑
h=1

H∑
h=1

Eπft

[
Eh

(
f t, xt

h, a
t
h

)]
≲

[
dGEC

H∑
h=1

T∑
t=1

( t−1∑
s=1

Eπexp(fs,h)ℓfs(f t, ζh)
)]1/2

.

Motivation. On average, if f t ∈ H is consistent with the historical data, then the test error on unseen
t-th trajectory will also be small (but is amplified by GEC). In particular, based on GEC, the regret
minimization problem is reduced to a sequential (optimistic) estimation problem.

Algorithm 1 Eluder TS
1: for t = 1, · · · , T do
2: 1 Optimistic planning: ft ∼ pt(f)

3: pt(f) ∝ p0(f)exp(γV1,f (x1))exp(
∑H

h=1 −L1:t−1
h

(f));

4: 2 Data collection: for each h ∈ [H],

5: execute πexp(f
t, h) for Nbatch times;

6: 3 Update the posterior pt .
7: end for

Algorithm 2 Eluder UCB
1: for t = 1, · · · , T do
2: 1 Optimistic planning: ft := argmax

f∈Bt
V1,f (x1)

3: Bt := {
∑H

h=1 L
1;t−1
h

(f) ≤ β2
t };

4: 2 Data collection: for each h ∈ [H],

5: execute πexp(f
t, h) for Nbatch times;

6: 3 Update the confidence set Bt .
7: end for

Algorithmic design. The sequential (optimistic) estimation problem, which can be achieved by
either Thompson sampling (Algorithm 1) or UCB (Algorithm 2). It remains to choose appropriate
loss estimator L1:t−1

h (f) so that it converges to the training error
∑t−1

s=1 Eπexp(fs,h)ℓfs(f, ζh). We
shall see that a majority of algorithmic choices scattered in the literature share this goal. We take the
Q-type value-based problem and Q-type model-based problem as examples.

Remark 1. We highlight that there are indeed two notions in Algorithm 1 and 2. We use the Eluder
TS algorithm as an example. After the first step, we have constructed a distribution of the hypothesis.
Then, such a distribution induces a distribution for the policy:

qt(π) := pt
(
{f ∈ H|πexp(f,h) = πh,∀h ∈ [H]}

)
,

We refer such a inducement to as the simple strategy. Although such a mechanism is natural and is
general enough to cover a majority of interesting iterative decision making problems, we do remark
that it can be suboptimal in some cases due to Foster et al. (2022). We defer a detailed discussion to
Section 6.

Example 1 (Q-type value-based problem). We have ℓfs(f t, ζh) = Eh(f t, ζh)
2 and πexp(f, h) = πf .

We suffer from the famous double-sampling issue (Antos et al., 2008):

Eπfs [Qh,f (x
s
h, a

s
h)− rsh − Vh+1,f (x

s
h+1)]

2 = Eπfs Eh(f, x
s
h, a

s
h)

2︸ ︷︷ ︸
Goal

+ σ2
h,f .︸ ︷︷ ︸

Sampling variance

This issue can be addressed by using two independent samples (hence the name) because EXY =
EXEY = (EX)2 if X and Y are i.i.d.. Two typical strategies exist in the literature.
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• Minimax formulation (GOLF (Jin et al., 2021), Conditional PS (Dann et al., 2021))1

L1:t−1
h (f) = −η

t−1∑
s=1

[Qh,f (x
s
h, a

s
h)− rsh − Vh+1,f (x

s
h+1)]

2

− logEf̃h∼p0
h
(·)

[
exp

(
−η

t−1∑
s=1

[Qh,f̃ (x
s
h, a

s
h)− rsh − Vh+1,f (x

s
h+1)]

2

)]
,

– The introduced log term cancels the variance;
– The log term requires Completeness to deal with;

2 Trajectory average with m i.i.d. samples (OLIVE (Jiang et al., 2017), BiLin-UCB (Du et al.,
2021))

L1:t
h (f) = −η

t∑
s=1

( 1

m

m∑
i=1

(
Qh,f (x

s
i,h, a

s
i,h)− rsi,h − Vh+1,f (x

s
i,h+1)

))2

;

– Sample mean admits a smaller variance: Var[X̄m] = 1
mVar[X].

Example 2 (Q-type model-based problem). We have πexp(f, h) = πf and for all fs ∈ H,
ℓfs(f t, ζh) = D2

H

(
Ph,ft(·|xh, ah),Ph,f∗(·|xh, ah)

)
. For model-based problem, we choose

L1:t
h (f) :=

t∑
s=1

Ls
h(f) := η

t∑
s=1

logPh,f (x
s
h+1 | xs

h, a
s
h).

Then, we can equivalently use ∆Lt
h(f) = Lt

h(f)− Lt
h(f

∗) in the theoretical analysis (for instance,
this will not influence the posterior distribution of Algorithm 1). Then, the MLE analysis directly
leads to the desired Hellinger distance (see e.g. Lemma E.5 of Zhong et al. (2022)). Therefore, one
only requires realizability for model-based approach.

Remark 2. In the literature, we have known that model-based approach with realizability can
achieve a

√
T -regret without further assumptions (e.g. Agarwal and Zhang (2022) v.s. Dann et al.

(2021)). However, we remark that model-based realizability is stronger than the model-free one.
Suppose that we are given a model class such that M∗ ∈ M. We can take H = H1 × · · ·HH and
Hh = {Qh,M : M ∈ M} ∪ T M

h Hh+1 for all M ∈ M. By doing so, we construct a value-based
hypothesis H satisfying realizability and Bellman completeness and |H| = |M|2.

The point here is that all these approaches are designed for an effective (and sharper) estimation of
in-sample training error. In particular, we have the following (informal) results.

Lemma 2. For model-free approach, we have the following results.

• Minimax approach with Bellman completeness 2:

t−1∑
s=1

EπfsEh(f t, ζh)
2 ≲ log(|H|/δ);

• Trajectory average:

t−1∑
s=1

EπfsEh(f t, ζh)
2 ≲

(t− 1)

m
· log(|H|/δ);

• Model-based approach:

t−1∑
s=1

EπfsD
2
H

(
Ph,ft(·|xh, ah),Ph,f∗(·|xh, ah)

)
≲ log(|M|/δ).

1Also used in (Antos et al., 2008) and (Chen and Jiang, 2019).
2The Th-completeness can be generalized. See Bellman complete model in Du et al. (2021).
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Combining Lemma 2 with Lemma 1 and Definition 1, we know that

Theorem 1 (Zhong et al. (2022)). Suppose |H| is finite. With appropriate choices of hyper-parameters,
the Eluder TS/UCB admit the following regret bounds:

1 Minimax formulation with Realizability + Completeness: Õ
(√

dGEC ·HT · log |H|
)
;

2 Trajectory average with Realizability: Õ
(
d
2/3
GEC ·H1/3T 2/3 · (log |H|)1/3

)
;

3 Model-based approach with Realizability: Õ
(√

dGEC ·HT · log |M|
)
.

4 DECISION-ESTIMATION COEFFICIENT (DEC)

We consider the function approximation with a model class M. The original DEC (Foster et al.,
2021) is defined as follows.

Definition 2 (Decision-Estimation Coefficient). Given a class of model, and a reference model M̂
(typically is estimated by the historical dataset), we define

decγ(M,M) = inf
p∈∆(Π)

sup
M∈M

Eπ∼p[V1,M (x1)− V π
1,M (x1)︸ ︷︷ ︸

regret of decision

−γ ·D2
H(M(π), M̂(π))︸ ︷︷ ︸

Easy to control

], (5)

where we further define decγ(M) := sup
M̂∈M decγ(M, M̂).

Motivation. Intuitively speaking, for a fixed M ∈ M as the true model, DEC converts our target,
immediate regret, (not easy to control) to the estimation error, Hellinger distance, (something we
know how to control).

• The estimation error is the Hellinger distance between the true model M and our estimated
reference model M ;

• DEC is in a worst-case manner, as it can be regarded as the worst-case cost for such a target
transformation;

• DEC does not (at least not explicitly) incorporate optimism in the definition. Foster et al.
(2022) extends the vanilla DEC to the optimistic version and discuss when such a optimistic
modification can help (see Section 6 for details).

To illustrate how DEC works, we now give an upper bound for the Algorithm 3 (original algorithm of
Foster et al. (2021) with with Option I).

Theorem 2 (Reduction for DEC). Suppose that we have access to an online estimation oracle
AlgEst : St−1 → M̂t ∈ M for every t ∈ [T ]. Then, if we adopt the posterior distribution as the
solution of the minimax problem in the definition of DEC, then, we have

EReg(T ) ≤
T∑

t=1

decγ(M, M̂t)︸ ︷︷ ︸
Cost of transformation

+ γ ·
T∑

t=1

Eπt∼pt [D2
H

(
M∗(πt), M̂t(πt)

)
]︸ ︷︷ ︸

New target: online learning

. (6)
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Proof. We have

EReg(T ) =
T∑

t=1

Eft∼ptV ∗
1 (x1)− V πt

1 (x1)

=

T∑
t=1

Eπt∼pt [V ∗
1 (x1)− V πt

1 (x1)]− γEπt∼pt [D2
H

(
M∗(πt), M̂t(πt)

)
]

+ γ ·
T∑

t=1

Eπt∼pt [D2
H

(
M∗(πt), M̂t(πt)

)
]︸ ︷︷ ︸

EstH

≤ sup
supM∈M

Eπt∼pt

[
V1,M (x1)− V πt

1,M (x1)]− γD2
H

(
M(πt), M̂t(πt)

)]
+ γ ·EstH

= inf
p∈∆(Π)

sup
M∈M

Eπ∼p

[
V1,M (x1)− V π

1,M (x1)]− γD2
H

(
M(π), M̂t(π)

)]
+ γ ·EstH

=

T∑
t=1

decγ(M, M̂t) + γ ·EstH ,

where in the first inequality, we use the realizability M∗ ∈ M and also the worst-case consideration
of DEC.

Algorithm 3 DEC-META
1: Initialize: γ > 0.
2: for t = 1, 2, · · · , T do
3: Compute estimate M̂t := AlgEst

(
St−1

)
;

4: Solve the minimax problem in the definition of DEC:

pt := argmin
p∈∆(Π)

sup
M∈M

Eπ∼p[V1,M (x1)− V π
1,M (x1)− γ ·D2

H(M(π), M̂t(π))];

5: Execute πt ∼ pt and collect trajectory into St = St−1 ∪ {xt
h, a

t
h, r

t
h}.

6: end for

Discussions According to the definition of DEC in Definition 2 and the proof of Theorem 2, we
can see that two natural extensions are straightforward.

• We can replace the Hellinger distance D2
H(·, ·) with other divergence D

(
M(π)||M̂(π)

)
:

decDγ (M,M) := inf
p∈∆(Π)

sup
M∈M

Eπ∼p[V1,M (x1)− V π
1,M (x1)− γ ·D(M(π), M̂(π))].

Accordingly, we have the following transformation:

EReg(T ) ≤
T∑

t=1

decDγ (M, M̂t) + γ ·
T∑

t=1

Eπt∼ptD(M(π), M̂t(π));

• We can further replace the point estimate M̂t with a randomized estimator with distribution
ν and we use dec to highlight such a randomization feature:

decDγ (M, ν) := inf
p∈∆(Π)

sup
M∈M

Eπ∼p[V1,M (x1)− V π
1,M (x1)−γ ·E

M̂∼ν
D(M(π), M̂(π))].

Accordingly, we have the following transformation:

EReg(T ) ≤
T∑

t=1

decDγ (M, νt) + γ ·
T∑

t=1

Eπt∼ptE
M̂t∼νt

D(M(π), M̂t(π)).
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Also, we would like to highlight that a direct motivation for us to consider the extension is: similar to
the discussions for GEC in Section 3 and the bilinear class (Du et al., 2021), the flexible choices of
loss function can cover more approaches and problems, and also can lead to better estimation rate in
some situations, which has been shown by Chen et al. (2022); Foster et al. (2022). For instance, it
seems that the vanilla DEC (Foster et al., 2021) CANNOT handle model-free approach even though
we replace the Hellinger distance with some suitable divergence (e.g. squared Bellman error) 3.

We defer a detailed discussion to Section 6 and first introduce a closely related notion of decoupling
coefficient (Zhang, 2022), whose techniques are later leveraged to the extensions of DEC.

5 DECOUPLING COEFFICIENT

We consider the contextual bandit problem with a value-based hypothesis space H := {f :
X × A → [−b, b]} 4. We also use the convention that f(x) := maxa∈A f(x, a) and a(f, x) ∈
argmaxã∈A f(x, ã). The DC shares similar spirits with the DEC to convert the immediate regret to
something that is easier to deal with, defined as follows.
Definition 3. Given x ∈ X and H′ ⊂ H, we define dc(x,H′) as the smallest K > 0 such that for
all p ∈ ∆(H′) and the induced random policy

πp(ã|x) = Ef∼p(·)I
(
ã ∈ argmax

a∈A
f(x, a)

)
,

we have the following immediate regret decoupling:

Ef∼p(·)regt := Ef∼p(·)[f
∗(x)− f∗(x, a(f, x))]

≤ Ef∼p(·) f(x)− f∗(x)︸ ︷︷ ︸
∆f(x)

+ inf
µ>0

[
µEã∼πp(ã|x)Ef∼p(·)

(
f(x, ã)− f∗(x, ã)

)2
+

K

4µ

]
.

We proceed to write down the decomposition for T rounds.

EReg(T ) ≤
T∑

t=1

dc(xt,Ω)

4µ︸ ︷︷ ︸
Transformation cost

+

T∑
t=1

[
µEã∼πpt (ã|x

t)Eft∼pt(·)
(
f t(xt, ã)− f∗(xt, ã)

)2
+ Eft∼pt(·)∆f t(xt)

]
︸ ︷︷ ︸

Optimistic Target

,

where ∆f t(xt) is referred to as the feel-good term used to compensate the difference between f∗(xt)
and f(xt).

Motivation. Similar to the DEC, the main motivation for DC is to convert the regret minimization
regt to another target that can be handled rather easily. The key feature is that in the new optimistic
target, the action and the hypothesis are independently sampled from their posterior distributions,
which can be handled with standard techniques in the analysis of online aggregation algorithms. As
compared to DEC,

• DC allows an arbitrary posterior over the hypothesis class and takes the induced random
policy πp(·|x), which allows a more flexible choice of algorithms to minimize the new
optimistic target;

• DC has an additional feel-good term.

In particular, the presence of the feel-good term is for the optimism at first but is later shown to be
beneficial for a large class of problems as noted by Foster et al. (2022) and we will discuss this in
Section 6.

Algorithmic design. Algorithm 4 presents the Thompson sampling for contextual bandit, which
shares similar structure with Algorithm 1 because they are all based on exponential weights update.
The main difference is that DC-TS involves the feel-good term as part of the estimation error, which
tends out to be critical in some cases, while Eluder-TS adopts an optimistic prior. This difference
stems from the different philosophies of the considered complexity measures.

3See discussion in Section 3.1 of Foster et al. (2022)
4We can handle unbounded reward with refined analysis as in Zhang (2022).
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Algorithm 4 DC-TS for Contextual Bandit
1: for t = 1, 2, · · · , T do
2: Observe xt ∈ X ;
3: Sample f t ∼ pt(·|St−1) by

pt(f |St−1) ∝ p0(f) · exp
(
−

t−1∑
s=1

L(f, xs, as, rs)
)
, (7)

where L(f, x, a, r) = η ·
(
f(x, a)− r

)2 − γ · f(x).
4: end for

We only present the result when the action space is finite for simplicity.

Theorem 3 (DC-TS). Suppose that the contextual has a finite action space. Then, suppose further
that the boundedness condition is satisfied by 1. Then, with appropriate choices of hyper-parameters,
we have

EReg(T ) ≲
√
|A|T log |H|.

Discussion. The DC can be further bounded for linearly embeddable contextual bandit and certain
parametric function class. It was later extended to model-based scenario with Hellinger distance
(Agarwal and Zhang, 2022). In particular, we would like to highlight that from a technical viewpoint,
the requirement of decoupling for arbitrary distribution in DC is unnecessary. Actually, we only
require a special class of distribution (corresponding to a special class of exploration policy) to satisfy
the decoupling.

6 OPTIMISTIC EXTENSION OF DEC

The three complexity measures share similar ideas of reducing the hard regret minimization problem
to some new target that is easier to handle. Specifically, GEC reduces the out-of-sample test error to
the in-sample training error (on average); DC and DEC convert the immediate regret incurred in one
iteration to the estimation error of the hypothesis. There are two necessary conditions must be met if
we would like to handle problems with such a reduction-based framework:

• The reduction holds with a mild complexity measure (GEC/DC/DEC);

• The new target can be handled (with a sharp rate).

Sometimes, we are in face of a trade-off between these two conditions. The GEC (Zhong et al.,
2022) allows a flexible choice of the notion of training error, thus covering both the model-free
and model-based approaches. DC has been applied to model-free approach for contextual bandit
(Zhang, 2022) and model-based approach for RL (Agarwal and Zhang, 2022), with different choices
of “optimistic target”. However, the vanilla DEC (Foster et al., 2021) cannot handle the model-free
approach5.

In comparison, one of the key feature of GEC and DC is that they all adopt some optimistic
modification to handle the difference between V1,f and V ∗

1 to encourage exploration, while GEC
solves the minimax problem in the definition. The recent conclusions (Foster et al., 2022; Zhong
et al., 2022) are as follows:

• In terms of the complexity measure, the optimistic modification, or more general, a flexible
choice of target (beyond Hellinger distance) is beneficial for a large class of problems;

• In terms of the algorithmic design, after obtaining the (randomized) hypothesis estimation,
direct usage of the induced randomized policy (as in Definition 3) can be suboptimal.

5Foster et al. (2021) deal with model-free case via a Bayesian approach. “This allows us to deduce existence
of algorithms for the frequentist setting by exhibiting algorithms for the Bayesian setting”. As shown by Zhang
(2022), this can be done without the optimistic modification. See Section 2.1 of Foster et al. (2021) and page 13
of Foster et al. (2022) for a remark.
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In what following, we first extend the DEC to handle the model-free approach. Then, we discuss
whether the minimax mechanism to pick the policy is necessary.

Optimistic DEC We now combine DEC with the optimistic modification (Zhang, 2022; Dann et al.,
2021; Agarwal and Zhang, 2022; Zhong et al., 2022), as done by Foster et al. (2022).
Definition 4 (Optimistic Decision-Estimation Coefficient (ODEC)).

odecDγ (M, µ) := inf
p∈∆(Π)

sup
M∈M

Eπ∼pEM̂t∼µt [V1,M̂t
(x1)− V π

1,M (x1)− γ ·Dπ(M̂t||M)]. (8)

To improve readability and to facilitate discussion, we also write the definition of the vanilla DEC
(with randomized estimator and general divergence) here:

decDγ (M, µ) = inf
p∈∆(Π)

sup
M∈M

Eπ∼pEM̂t∼µt [V1,M (x1)− V π
1,M (x1)− γ ·Dπ(M̂t||M)].

In comparison, odec replace the original V1,M (x1) with V
1,M̂t

(x1). We shall remark that we regard
M as the true model and take a sup to consider the worst-case scenario. Therefore, this is exactly
the difference between V ∗

1 (x1) and V1,f (x1) we have mentioned for GEC and DC. Such a feel-good
consideration play a critical role for DEC to cover more problems.

Algorithmic design. We again suppose that we have an online oracle such that take the historical
dataset St−1 = {ζ1, · · · , ζt−1} as an input, and produce a distribution µt ∈ ∆(M) as output, where
we write:

µt = AlgEst(St−1).

For instance, (7) is such an example. For this randomized estimator, we define the optimistic
estimation error as

OptEstDγ :=

T∑
t=1

Eπt∼ptE
M̂t∼µt

[
Dπ

(
M̂t||M∗)+ γ−1

(
V ∗
1 (x1)− V

1,M̂t
(x1)

)
︸ ︷︷ ︸

Feel-good term

]
.

Algorithm 5 shares similar structure with Algorithm 3, except that we now replace DEC, Est with
Optimistic DEC and OptEst, respectively.
Theorem 4 (Reduction for O-DEC). Suppose that we have access to an online estimation oracle
AlgEst : St−1 → M̂t ∈ ∆(M) for every t ∈ [T ]. Then, if we adopt the posterior distribution as the
solution of the minimax problem in (8), then, we have

EReg(T ) ≤
T∑

t=1

odecDγ (M, µt)︸ ︷︷ ︸
Cost of transformation

+ γ ·
T∑

t=1

Eπt∼ptE
M̂t∼µt

[
Dπ

(
M̂t||M∗)+ γ−1

(
V ∗
1 (x1)− V

1,M̂t
(x1)

)]
︸ ︷︷ ︸

New target: online learning with feel-good term

.

(9)

Algorithm 5 Optimistic-DEC-META
1: Initialize: γ > 0.
2: for t = 1, 2, · · · , T do
3: Compute randomized estimator µt = AlgEst(St−1).
4: Solve the minimax problem in the definition of DEC:

pt := argmin
p∈∆(Π)

sup
M∈M

Eπ∼pEM̂t∼µt [V1,M̂t
(x1)− V π

1,M (x1)− γ ·Dπ(M̂t||M)];

5: Execute πt ∼ pt and collect trajectory into St = St−1 ∪ {xt
h, a

t
h, r

t
h}6.

6: end for

Motivation. As we mentioned before, to handle a RL problem under the reduction framework, we
need (1) reduction holds: the DEC is mild and (2) the reduced estimation can be done. The following
result shows that there exists some instance where the vanilla DEC does not admit a favorable bound
for model-free approach.
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Theorem 5 (Separation in Model-free Setting). Let M be the class of all horizon-H tabu-
lar MDPs with |X | = 2 and |A| = 2. If we adopt ℓesth (Q; zh) :=

(
Qh(xh, ah) − rh −

maxa′∈A Qh+1(xh+1, a
′)
)
, and define the divergence as

Dπ(Q||M) :=

H∑
h=1

(
EM,πℓ

est
h (Q; zh)

)2
,

where we use the induced Q-value of the model as the first input. Then, we have supµ odecγ(M, µ) ≲
H
γ but there exists M ∈ M for which decγ(M,M) ≳ 2H

γ ∧ 1.

On the other hand, with the feel-good term, DEC can handle the bilinear class with model-free
approach, which we defer to the Appendix for details.

7 DISCUSSION

A very interesting observation so far is that the vanilla DEC is sufficient for model-based approach,
but only the optimistic DEC can handle the model-free approach 7. This question has been addressed
in Foster et al. (2022) as follows.

Further notations. In this section, we use the underline to denote the vanilla DEC with randomized
estimator:

decDγ (M, µ) = inf
p∈∆(Π)

sup
M∈M

Eπ∼p[V1,M (x1)− V π
1,M (x1)− γ · E

M̂∼ν
Dπ(M, M̂)].

and define decDγ (M) := supµ dec
D
γ (M).

Feel-good term helps for asymmetric divergence We use co(X ) to denote the set of all finitely
supported convex combinartions of elements in X . We require the following assumption.
Assumption 2. For all pairs of models M,M ′ ∈ co(M), there exists some L > 0 such that(

V π
1,M ′ − V π

1,M

)2 ≤ L2Dπ(M ′||M).

Given a divergence D, we define the flipped divergence by swapping the first and second arguments:

Ďπ(M ′∥M) := Dπ(M∥M ′). (10)

We have the following result.
Lemma 3. Whenever Assumption 2 holds, we have that for all γ > 0,

decĎ1.5γ(M)− L2

2γ
≤ odecDγ (M) ≤ decĎ0.5γ(M) +

L2

2γ
.

Therefore, ignoring the possible loss of rate, as long as we can control the estimation error with
respect to the flipped divergence, this lemma shows that optimism is not necessary. This implies the
following result:

Ignoring possible lose of rate, for symmetric convergence, optimism offers no statistical advantage.

The following lemma further shows that under mild assumptions on the divergence D, randomization
offers no improvement.
Lemma 4. Suppose that D is a bounded divergence satisfying the following “triangle inequality”:
there exists some C > 0, such that for all M,M ′, M̂ and for all π ∈ Π, we have

Dπ (M∥M ′) ≤ C ·
(
Dπ(M̄∥M) +Dπ

(
M̄∥M ′)) .

Then, for all γ > 0, we have

decDγ (M)︸ ︷︷ ︸
Vanilla DEC sup over deterministic reference

≤ decDγ/2C(M)︸ ︷︷ ︸
Randomized DEC sup over all distributions

.

7It has been shown by Chen et al. (2022) that optimistic DEC can handle model-based approach.
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On the other hand, whenever D is convex in the first input, we have

decDγ (M) ≤ sup
M̂∈co(M)

decDγ (M, M̂) = decDγ (M(.

We now consider the concrete examples.

• Model-based approach with Hellinger distance.
– D2

H satisfies Assumption 2 with L = 1 when the value functions are bounded by 1;
– D2

H satisfies the condition of Lemma 4 with C = 2;
– Therefore, for Hellinger distance, we have

odecD2γ(M)− 1

γ
≤ sup

M̂

decγ(M, M̂) ≤ odecγ/6(M) +
3

γ
.

Optimism (or randomized estimator) offers no statistical advantage for model-based
approach with Hellinger divergence.

• Model-free approach with bilinear class.
– The bilinear divergence (detailed in the Appendix) is asymmetric:

Dπ
bi(Q||M) =

H∑
h=1

(
EM,π[ℓh(Q; zh)]

)2
;

– From the viewpoint of estimation, it is not a good idea to swap the input because we
can only collect trajectory with the underlying M∗. Specifically, the following flipped
estimation loss is hard to control:

Ěst :=

T∑
t=1

Eπt∼ptE
M̂t∼µtD

π
bi(Q

∗||M̂t) =

T∑
t=1

Eπt∼ptE
M̂t∼µt

[ H∑
h=1

(
E
M̂t,πt

ℓh(Q
∗; zh)

)2]
;

– On the other hand, as we mentioned before, although the estimation problem of the
bilinear class can be handled by trajectory average, the vanilla DEC without feel-good
term does not admit a favorable bound (Theorem 5).

On the minimax strategy for policy selection For DEC-based algorithms including Algorithm 3
and Algorithm 5, once we obtain a distribution over M: µt (deterministic estimator is a special case),
they solve a minimax problem for policy selection:

pt := argmin
p∈∆(Π)

sup
M∈M

Eπ∼pEM̂t∼µt [V1,M̂t
(x1)− V π

1,M (x1)− γ ·Dπ(M̂t||M)].

Then, they pick a policy by πt ∼ pt. On the other hand, algorithms in Zhang (2022); Dann et al.
(2021); Agarwal and Zhang (2022); Zhong et al. (2022) sample the policy by sampling a hypothesis
f t ∼ µt. Equivalently, the induced distribution over the policy space is

qt(π) :=

∫
{ft∈H:π̃(ft)=π}

dµt(f t),

where π̃(f) is the policy induced by hypothesis f . We can show that such a simple mechanism is
sufficient for large classes of tractable problems. However, the following result shows that it could be
suboptimal in some corner case.
Theorem 6 (Insufficiency of simple strategy). Consider the Hellinger distance. For any S ∈ N and
H ≥ log2 S, there exists a class of horizon-H MDPs M with |X | = S and |A| = 3 that satisfies the
following properties:

• There exists an estimation oracle such that OptEstHγ ≲ log(S/δ) for all γ > 0;

• The simple strategy has EReg(T ) ≳ S ∧ 2Ω(H);

• The minimax mechanism has EReg(T ) ≤ Õ(
√
T logS) where odecγ ≤ 1

γ .
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Discussion: Average Error v.s. Squared Error By Zhong et al. (2022) and Foster et al. (2022),
we have seen that a flexible choice of the notion of estimation error is beneficial to cover more
problems and methods. For most of frameworks we have adopt the squared Bellman residual, while
for OLIVE (Jiang et al., 2017), it uses an average one. Since the average loss does not suffer from the
double-sampling issue, one may wonder whether the average loss is superior.
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A BI-ODEC-E2D

In this section, we show how to handle the bilinear class by model-free approach and optimistic DEC.
For simplicity, we consider the finite-dimensional case, which can be generalized by the notion of
information gain (Du et al., 2021). To be consistent with the worst-case consideration (supM∈M) of
DEC, we slightly modify the original definition in Du et al. (2021).
Definition 5 (Bilinear class). An MDP M is said to a bilinear class with H, discrepancy function
ℓ : H× (X × A × R × X ) ×H → R, if there exists functions Wh : H → Rd and Xh : H → Rd

such that for all f ∈ H and h ∈ [H], we have∣∣∣Eπf ,M

[
Qh,f (xh, aH)− rh − Vh+1,f (xh+1)

]∣∣∣ ≤ | ⟨Xh(f ;M),Wh(f ;M)⟩ |.

Moreover, we denote zh = (xh, ah, rh, xh+1). Then, it holds that for all f, g ∈ H:∣∣∣EM,xh∼πf ,ah∼π̃ℓh(g; zh)
∣∣∣ = | ⟨Xh(f ;M),Wh(g,M)⟩ |,

where π̃ is either πf (Q-type) or πg (V-type). Furthermore, we assume that |EM,πℓh(f
∗; zh)| = 0

for all π. We further assume that |ℓh| is upper bounded by L ≥ 1.

Note that we assume that the discrepancy loss does not depend on the roll-in policy for simplicity
and this can be generalized readily. We also list the original definition here.
Definition 6 (Bilinear Class). An MDP M is said to a bilinear class with H, discrepancy function
ℓ : H× (X × A × R × X ) ×H → R, if there exists functions Wh : H → Rd and Xh : H → Rd

such that for all f ∈ H and h ∈ [H], we have∣∣Eπf
[Qh,f (xh, ah)− r (xh, ah)− Vh+1,f (xh+1)]

∣∣ ≤ |⟨Wh(f)−Wh (f
∗) , Xh(f)⟩| ,∣∣Exh∼πf ,ah∼π̃ [ℓf (g, ζh)]

∣∣ = |⟨Wh(g)−Wh (f
∗) , Xh(f)⟩| ,

(11)

where π̃ is either πf (Q-type) or πg (V-type).

Optimistic DEC framework We still consider the model class M but in general we may take the
induced value function Qh,M as input (referred to as the sufficient statistic in Foster et al. (2022)).
With slight abuse of notations, we adopt the following Dπ

bi(f ||M):

Dπ
bi(f ||M) :=

H∑
h=1

(
EM,πℓh(f ; zh)

)2
.

In this case, the optimistic DEC is given by

odecDγ (M, µt) := inf
p∈∆(Π)

sup
M∈M

Eπ∼pEM̂t∼µt [V1,M̂t
(x1)−V π

1,M (x1)−γ·
H∑

h=1

(
EM,πℓh(M̂t; zh)

)2
].

and the estimation target is

OptEstDγ :=

T∑
t=1

Eπt∼ptE
M̂t∼µt

[ H∑
h=1

(
EM∗,πt

ℓh(M̂t; zh)
)2

+ γ−1
(
V ∗
1 (x1)− V

1,M̂t
(x1)

)
︸ ︷︷ ︸

Feel-good term

]
.

Error estimation For each epoch k, we adopt the trajectory average technique to compute:

Lk(f) :=

H∑
h=1

( 1

m

m∑
i=1

ℓh(f ; z
k,i
h

)2 − 1

8γ
V1,f (x1).

The randomized estimator is given by the following exponential weight update:

µk(f) ∝ exp
(
− η

k−1∑
s=1

Ls(f)
)
,

which is similar to MOPS (Agarwal and Zhang, 2022). The following lemma controls the cumulative
estimation error.
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Lemma 5 (Estimation error for bilinear class). If we take batch size as m, γ ≥ 1, and K := T/m,
with an appropriate choice of learning rate η, the exponential weight update gives

OptEstγ ≤
√

K log |Q|
γ

+HL2 log(|Q|KH/δ)
(
1 +

K

m

)
.

Note that the estimation error only depends the cardinality of Q := {Qh,M : M ∈ M}, which can
be much smaller than |M|. Also note that we cannot take m ≥ K because it will not bring any help.

Proof. We start with the following standard online aggregation analysis.

Lemma 6 (online learning). For t = k, · · · ,K:

• Learner predicts a random hypothesis gk ∈ H;

• Nature reveals Lk : H → R and learner suffers loss Lk(gk).

If we define the regret as:

RegOL :=

K∑
k=1

Egk∼µkLk(gk)− inf
g∈H

K∑
k=1

Lk(g),

where µk(g) ∝ exp
(
− η

∑k−1
s=1 L

s(g)
)
, then for any sequence of loss function Ls, · · · , LT with

Ls(g) ∈ [−L,L], if we set η ≤ 1/(2L), then

RegOL ≤ 4η

K∑
s=1

Egt∼µt

[
(Lk(gk))2

]
+

log |H|
η

.

For our algorithm, we take

Lk(f) :=

H∑
h=1

( 1

m

m∑
i=1

ℓh(f ; z
k,i
h )

)2 − αV1,f (x1).

Therefore, it holds that
K∑

k=1

Efk∼µkLk(fk)−
K∑

k=1

Lk(f∗) ≤ 4η

K∑
k=1

Efk∼µk

(
Lk(fk)

)2
+

log |Q|
η

.

By (a+ b)2 ≤ 2a2 + 2b2 and boundedness and also the Jensen’s inequality, we have

(
Lk(f)

)2 ≤ 2HL2
H∑

h=1

( 1

m

m∑
i=1

ℓh(f ; z
k,i
h )

)2
+ 2α2.

Therefore, we have
K∑

k=1

H∑
h=1

Efk∼µk

( 1

m

m∑
i=1

ℓh(f
k; zk,ih )

)2
+ α

K∑
k=1

Efk∼µk [V
∗
1 (x1)− V1,f (x1)]

≤
K∑

k=1

H∑
h=1

( 1

m

m∑
i=1

ℓh(f
∗; zk,ih )

)2
+ 8ηHL2

K∑
k=1

H∑
h=1

Efk∼µk

( 1

m

m∑
i=1

ℓh(f ; z
k,i
h )

)2
+ 8ηα2K +

log |Q|
η

.

We take η ≤ 1
16HL2 such that 8ηHL2 ≤ 1/2. Then, it follows

1

2

K∑
k=1

H∑
h=1

Efk∼µk

( 1

m

m∑
i=1

ℓh(f
k; zk,ih )

)2
+ α

K∑
k=1

Efk∼µk [V
∗
1 (x1)− V1,f (x1)]

≤
K∑

k=1

H∑
h=1

( 1

m

m∑
i=1

ℓh(f
∗; zk,ih )

)2
+ 8ηα2K +

log |Q|
η

.

(12)

We now state the following uniform concentration inequality.
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Lemma 7 (Uniform concentration). With probability at least 1− δ, for any (k, h, f), we have

0.5
(
EM∗,πk

ℓh(f ; zh)
)2 − 2L2ι

m
≤

( 1

m

m∑
i=1

ℓh(f ; z
k,i
h )

)2 ≤ 2
(
EM∗,πk

ℓh(f ; zh)
)2

+
4L2ι

m
.

Combine (12) with the lemma, we have

1

4

K∑
k=1

H∑
h=1

Efk∼µk

(
EM∗,πk

ℓh(f
k; zh)

)2
+ α

K∑
k=1

Efk∼µk [V ∗
1 (x1)− V1,f (x1)]

≤ 8ηα2K +
log |Q|

η
+

6HKL2ι

m
,

where we use EM∗,πℓh(f
∗, z) = 0. Now we apply the Freedman’s inequality to obtain that

K∑
k=1

H∑
h=1

Efk∼µk

(
EM∗,πkℓh(f

k; zh)
)2 ≥ 1

2

K∑
k=1

Eπk∼pk

H∑
h=1

Efk∼µk

(
EM∗,πkℓh(f

k; zh)
)2 −O(HL2 log(H/δ)).

Putting everything together, we have

1

8

K∑
k=1

Eπk∼pkEfk∼µk [Dπk(fk||M∗) + 8α(V ∗
1 (x1)− V1,f (x1))] ≲ ηα2K +

log |Q|
η

+
HKL2ι

m
+HL2 log(H/δ).

We now choose α = 1
8γ and η =

√
log |Q|
α2K ∧ 1

16R to obtain the desired result.

The following lemma establishes the upper bound for the odec.

Lemma 8 (O-DEC for the bilinear class). For Q-type problem, we have that for all γ > 0,

odecDγ (M) ≲
H · d
γ

.

For V-type problem, we have that for all γ ≥ H2 · d,

odecDγ (M) ≲

√
H2 · d

γ
.

We can obtain the regret as follows. We illustrate by the Q-type problems.

Reg(T ) ≲ odecDγ (M) · T + γm ·OptEstDγ (K,m, δ).

In our case, we have (we also take L = 1 for simplicity):

Reg(T ) ≤ odecDγ (M) · T +
√

mT log |Q|+ γHL2ιK +Hιγm

≤ HdT

γ
+
√
mT log |Q|+ γHιK + γHιm

≲ T 3/4

where m = K = T 1/2 and γ = T 1/4.

B BI-GEC-TS

In this section, we handle the bilinear class with GEC. We first study the UCB algorithm
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Bi-LinUCB By the definition of GEC and optimism, we have

Reg(T ) ≤ m
( K∑
k=1

V1,fk(x1)− V
π
fk

1 (x1)
)

≲ m
[
d

H∑
h=1

K∑
k=1

k−1∑
s=1

(
Eπfs ℓh(f

k, ζsh)
)2]1/2

+md.

It remains to determine the confidence level. We use the notation

ϵ̂kh(f) :=
1

m

m∑
i=1

lh(f, ζ
k,i
h ).

By Hoeffding’s inequality and a union bound, we have for all k ∈ [K], h ∈ [H], f ∈ H, it holds that
with probability at least 1− δ,

|ϵ̂kh(f)− Eπ
fk
ℓh(f, ζ

s
h)| ≲

√
ι

m
,

where ι = c · log(|H|KH/δ). By (a+ b)2 ≤ 2a2 + 2b2, we have(
Eπfs ℓh(f, ζh)

)2 ≤ 2
(
ϵ̂kh(f)

)2
+

2ι

m

and (
ϵ̂kh(f)

)2 ≤ 2
(
Eπfs ℓh(f, ζh)

)2
+

2ι

m
.

Therefore, the confidence level is that

k−1∑
s=1

(
Eπfs ℓh(f

∗, ζsh)
)2 ≤ 2(k − 1)ι

m
.

It holds that

Reg(T ) ≤ m
( K∑
k=1

V1,fk(x1)− V
π
fk

1 (x1)
)

≲ m
[
d

H∑
h=1

K∑
k=1

(k − 1)ι

m

]1/2
+md

≲ K
√
mdHι+md

≲ T 2/3d2/3(ιH)1/3

where we set K = T 1/3d1/3ι−1/3H−1/3 and mK = T . This matches the result of Du et al. (2021)
implied by online-to-batch (ignoring the H due to different boundedness assumption).

We also note that

Es(Ehϵ̂
s
h(f))

2 =
(
Esϵ̂

2
h(f)

)2
+

1

m2

m∑
i=1

σ2
i .

Therefore, we have

ϵ̂kh(f
∗) ≤ 2

(
Eslh(f

∗, ζh)
)2

+
2ι

m
=

2ι

m
.

and

Es(Ehlh(f, ζh))
2 ≤ 2Es

(
Ehlh(f, ζh)−

1

m

m∑
i=1

Ehlh(f, ζ
s,i
h )

)2
+ 2Es

( 1

m

m∑
i=1

Ei,hlh(f, ζ
s,i
h )

)2
≲ 2

ι

m
+ 2

(
Eslh(f, ζh)

)2
+ 2

1

m
≲

ι

m
.
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TS The first step is to equivalently write the posterior as:

pk(f) ∝ exp

−η

k−1∑
s=1

Ls
h(f) + ln p0(f) + γ ·

(
Vf,1(x1)− V ∗

1 (x1)
)︸ ︷︷ ︸

∆V1,f (x1)

 , (13)

where Ls
h(f) :=

(
ϵ̂sh(f)

)2
. We start with the definition of GEC.

K∑
k=1

V ∗
1 (x1)− V

π
fk

1 (x1) ≲ −
K∑

k=1

∆V1,fk (x1) +
[
d

H∑
h=1

K∑
k=1

( k−1∑
s=1

Eπexp(fs,h)ℓfs(fk, ξh)
)]1/2

+min{d,HK}

≲ −
K∑

k=1

∆V1,fk (x1) + µ

H∑
h=1

K∑
k=1

( k−1∑
s=1

Eπexp(fs,h)ℓfs(fk, ξh)
)
+ (

1

µ
+ 1) · d

= −
K∑

k=1

∆V1,fk (x1) + µ

H∑
h=1

K∑
k=1

( k−1∑
s=1

Eπexp(fs,h)(Ehlh(f
t, ξh))

2
)
+ (

1

µ
+ 1) · d

= −
K∑

k=1

∆V1,fk (x1) +
0.5η

γ

H∑
h=1

K∑
k=1

( k−1∑
s=1

Eπexp(fs,h)(Ehlh(f
k, ξh))

2
)
+ (

γ

0.5η
+ 1) · d

where we use AM-GM inequality in the second inequality and take µ = 0.5η
γ in the last equality. We

now connect the training error to the potential function.

ESk−1Efk∼pk

[
η

k−1∑
s=1

H∑
h=1

Ls
h(f

k) + ln
pk(fk)

p0(fk)
− γ ·∆V1,fk(x1)

]
≥ ESk−1Efk∼pk

[
0.5η

k−1∑
s=1

H∑
h=1

Es

(
Ehlh(f

k, ζsh)
)2 − ηH(k − 1)ι

m
− γ ·∆V1,fk(x1)

]

We require the following lemma.

Lemma 9. Let ν be a probability distribution over x ∈ X . Then, Ex∼ν [f(x)+log ν(x)] is minimized
at ν(x) ∝ exp(−f(x)).

This implies that

ESk−1Efk∼pk

[
η

k−1∑
s=1

H∑
h=1

Ls
h(f

k) + ln
pk(fk)

p0(fk)
− γ ·∆V1,fk(x1)

]
= ESk−1 inf

p
Ef∼p(·)

[
η

k−1∑
s=1

H∑
h=1

Ls
h(f) + ln

p(f)

p0(f)
− γ ·∆V1,f (x1)

]
≤ ESk−1 inf

p
Ef∼p(·)

[
2η

k−1∑
s=1

H∑
h=1

Es

(
Ehlh(f, ζ

s
h)
)2

+
ηH(k − 1)ι

m
+ ln

p(f)

p0(f)
− γ ·∆V1,f (x1)

]
≲ γϵ+ 2ηH(k − 1)ϵ2 +

ηH(k − 1)ι

m
+ ln |H|

=
ηH(k − 1)ι

m
+ ln |H|,
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where we take p(·) := δ(f∗). It follows that

Reg(T ) = m

K∑
k=1

[
V ∗
1 (x1)− V

π
fk

1 (x1)
]

≲ m ·
[ 1
γ

K∑
k=1

ESk−1Efk∼pk

[
η

k−1∑
s=1

H∑
h=1

Ls
h(f

k) + ln
pk(fk)

p0(fk)
− γ ·∆V1,fk(x1)

]
+

ηHK2ι

mγ

]
+ (

γ

0.5η
+ 1) ·md

≲
m

γ

(
ηHK2ι

m
+K · ln |H|

)
+ (

γ

0.5η
+ 1) ·md

=
ηHK2ι

γ
+

T · ln |H|
γ

+ (
γ

0.5η
+ 1) ·md

≲ T 2/3

Implicit UCB An interesting observation is that if we set γ ≈ η sufficiently large, the realizability
term ln |H| can be ignored (as long as it is finite). To interpret such an observation, we consider the
following modified algorithm, which does not explicitly construct a confidence set.

We consider the following algorithm:

fk := argmax
f∈H

[
V1,f (x1)− η

k−1∑
s=1

H∑
h=1

Ls
h(f)

]
.

It follows that

K∑
k=1

V ∗
1 (x1)− V πk

1 (x1) :=

K∑
k=1

V1,fk(x1)− V πk
1 (x1)−∆V1,fk(x1)

≲ −
K∑

k=1

∆V1,fk(x1) + µ

H∑
h=1

K∑
k=1

( k−1∑
s=1

Eπexp(fs,h)(Ehlh(f
k, ξh))

2
)
+ (

1

µ
+ 1) · d

≤ η

K∑
k=1

H∑
h=1

Ls
h(f

∗)− η

K∑
k=1

H∑
h=1

Ls
h(f

k) + µ

H∑
h=1

K∑
k=1

( k−1∑
s=1

Eπexp(fs,h)(Ehlh(f
k, ξh))

2
)
+ (

1

µ
+ 1) · d

≲
ηK2Hι

m
+ (µ− η)

H∑
h=1

K∑
k=1

( k−1∑
s=1

Eπexp(fs,h)(Ehlh(f
k, ξh))

2
)
+ (

1

µ
+ 1) · d

≤ ηK2Hι

m
+ (

1

µ
+ 1) · d

≲
K2Hι

m
+ d.

where the second inequality uses realizability and the definition of algorithm and we carefully tune η
and µ to cancel the loss of fk. It follows that

Reg(T ) ≲ K2Hι+md ≲ T 2/3.
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