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1 Introduction4

We are interested in the minimax optimality of various estimation procedures. In particular,5

we are interested in obtaining the mathching lower bound on estimation rates. This note is for6

Wainwright [2019].7

1.1 Problem Setup8

Given a class of distribution P, let θ denote a mapping from a distribution P ∈ P to a parameter
θ(P ) taking value in some space Ω. We aim to estimate θ(P ) based on a collection of samples {Xi}
i.i.d. drawn from P . Beyond the parameter estimation for the parametric distribution family, we
may consider P supported on [0, 1] with differentiable density function f and estimate:

θ(P ) =
∫ 1

0
(f ′(t))2dt ∈ R.

Minimax risk. An estimator θ̂ can be viewed as a measurable function from X n to the
parameter space Ω. To assess the quality of any estimator, we consider a semi-metric ρ(θ̂, θ∗)
where θ∗ = θ(P ). Here θ∗ is fixed, whereas θ̂ is a random variable so ρ(θ̂, θ∗) is also random. For
any fixed θ∗, θ̂ ≡ θ∗ has zero risk but is meaningless as it can behave poorly for other choices of
the parameter. To circumvent this and related difficulties, one may use the Bayesian approach to
view θ∗ as a random variable with some prior distribution. Another approach is to consider the
worst-case risk supP∈P EPρ(θ̂, θ(P )). An optimal estimator in this sense defines a quantity known
as minimax risk, namely,

R(θ(P); ρ) := inf
θ̂

sup
P∈P

EPρ(θ̂, θ(P )), (1.1)

where the infimum is taken over all possible estimators. If the estimator is based on n i.i.d. samples
from P , we use Rn to denote the associated minimax risk. We can also extend the definition with
a icreasing function ϕ:

R(θ(P);ϕ(ρ)) := inf
θ̂

sup
P∈P

EPϕ(ρ(θ̂, θ(P ))). (1.2)
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A common choice is ϕ(t) = t2 which leads to the mean-squared error associated with ρ.9

1.2 Preliminaries10

We first introduce the notion of divergence measure. Let P and Q be two distributions on X
with density p and q w.r.t. some base measure v. The total-variation (TV) distance is defined as

∥P −Q∥TV := sup
A∈X

|P (A) −Q(A)| = 1
2

∫
X

|p(x) − q(x)|v(dx), (1.3)

where the equivalence of two definitions is explored in Wainwright [2019], Exercise 3.13. We also
define the Kullback–Leibler divergence as

D(Q||P ) =
∫

X
q(x) log q(x)

p(x)v(dx). (1.4)

Unlike the total variation distance, KL-divergence is not actually a distance because it fails to be
symmetric. A third distance is the squared Hellinger distance, given by

H2(P ||Q) :=
∫ (√

p(x) −
√
q(x)

)2
v(dx). (1.5)

We have the following useful lemma.11

Lemma 1. For all distributions P and Q, we have

∥P −Q∥TV ≤
√

1
2D(Q||P ),

∥P −Q∥TV ≤ H(P ||Q)

√
1 − H2(P ||Q)

4 ,

(1.6)

where the first inequality is referred to as the Pinsker inequality and the second one is the Le Cam’s12

inequality.13

Packing. A δ-packing of a metric space (T, ρ) is a set {θ1, · · · , θM} ⊂ T s.t. ρ(θi, θj) ≥ δ for all14

i ̸= j. The δ-packing number M(δ;T, ρ) is the cardinality of the largest δ-packing. (The inequality15

is not strict for convenience in the subsequent calculation.)16

2 Le Cam’s Method17

The Le Cam’s method relates the minimax risk to a Hypothesis testing whose risk can be18

further lower bounded by the divergence introduced in Section 1.2. This can be used to establish19

the statistical lower bound for the problems of interests.20

Given a 2δ-packing of Ω: {θj ∈ Ω : j = 1, · · · ,M}, we select a representative distribution Pj for21

each θj to obtain {Pθj : j = 1, · · · ,M}. We consider the following mixture distribution generating22

process.23
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• Sample a random integer J uniformly from [M ];24

• Given J = j, sample Z ∼ Pθj := Pj .25

We then denote Q as the joint distribution of (Z, J). Then, the marginal distribution of Z is
Q̄ := 1

M

∑M
j=1 Pj . We consider a testing function ψ : Z → [M ] for the M-ary hypothesis testing

problem. So the associated probability of error is given by

Q(ψ(Z) ̸= J).

We have26

Lemma 2 (From estimation to testing.). For any increasing function ϕ and choice of 2δ-separated
set, the minimax risk is lower bounded as

R(θ(P);ϕ(ρ)) ≥ ϕ(δ) inf
ψ
Q[ψ(Z) ̸= J ]. (2.1)

Note that ϕ(δ) becomes smaller as δ → 0. On the other hand, as δ → 0, the testing becomes27

more difficult and so that we should expect Q[ψ(Z) ̸= J ] grows as δ decreases. We usually pick a28

δ∗ sufficiently small to ensure that R(θ(P);ϕ(ρ)) ≥ cϕ(δ∗) for some constant c > 0.29

Proof. For any P ∈ P with θ = θ(P ), we have

EPϕ(ρ(θ̂, θ)) ≥ ϕ(δ)P [ϕ(ρ(θ̂, θ)) ≥ ϕ(δ)] ≥ ϕ(δ)P [ρ(θ̂, θ) > δ],

where the first inequality follows from Markov’s inequality and the second one is because ϕ is
increasing. Since the superimum is always larger than the average (of a subset), we have

sup
P∈P

P [ρ(θ̂, θ) > δ] ≥ 1
M

M∑
j=1

Pj [ρ(θ̂, θj) > δ] = Q[ρ(θ̂, θJ) > δ],

where the last inequality uses the joint distribution of (Z, J). It reduces to bound Q[ρ(θ̂, θJ) > δ]
then. We define the test associated with an estimator θ̂ by

ψ(Z) := argmin
ℓ∈[M ]

ρ(θℓ, θ̂),

where the ties are broken arbitrarily. We claims that {ρ(θj , θ̂) < δ} implies that the test is correct.
This is because for any other k ∈ [M ],

ρ
(
θk, θ̂

)
≥ ρ

(
θk, θj

)
︸ ︷︷ ︸

≥2δ

− ρ
(
θj , θ̂

)
︸ ︷︷ ︸

<δ

> 2δ − δ = δ > ρ(θj , θ̂),

where we use {ϕk; k ∈ [M ]} is a 2δ-packing. By the decision rule of the test, we must have ψ(Z) = j.
This implies that

Pj [ρ(θ̂, θj) > δ] ≥ Pj(ψ(Z) ̸= j),
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and

Q
[
ρ
(
θ̂, θJ

)
≥ δ

]
= 1
M

M∑
j=1

Pj
[
ρ
(
θ̂, θj

)
≥ δ

]
≥ Q[ψ(Z) ̸= J ].

Combined with

EPϕ(ρ(θ̂, θ)) ≥ ϕ(δ)P [ϕ(ρ(θ̂, θ)) ≥ ϕ(δ)] ≥ ϕ(δ)P [ρ(θ̂, θ) > δ],

and

sup
P∈P

P [ρ(θ̂, θ) > δ] ≥ 1
M

M∑
j=1

Pj [ρ(θ̂, θj) > δ] = Q[ρ(θ̂, θJ) > δ],

we have
sup
P∈P

EPϕ(ρ(θ̂, θ)) ≥ ϕ(δ)Q[ψ(Z) ̸= J ].

Finally, we take a infimum on the RHS for ψ to obtain the desired lemma.30

2.1 Binary Testing31

In the binary testing case, the mixture distribution is

Q̄ = 1
2P0 + 1

2P1.

For a fixed ψ : Z → {0, 1}, the associated probability of error is

Q[ψ(Z) ̸= J ] = 1
2P0(ψ(Z) ̸= 0) + 1

2P1(ψ(Z) ̸= 1). (2.2)

Lemma 3 (Error probability to TV distance). We have

inf
ψ
Q[ψ(Z) ̸= J ] = 1

2[1 − ∥P1 − P0∥TV ]. (2.3)

This implies that
R(θ(P);ϕ(ρ)) ≥ ϕ(δ)

2 [1 − ∥P1 − P0∥TV ]. (2.4)

Proof. We define A := {x ∈ X : ψ(x) = 1}. Then,

sup
ψ
Q[ψ(Z) = J ] = sup

A⊂X
[12P1(A) + 1

2P0(Ac)] = sup
A⊂X

1
2[P1(A) − P0(A)] + 1

2 = 1
2 ∥P0 − P1∥TV + 1

2 .

The result follows from
sup
ψ
Q[ψ(Z) = J ] = 1 − inf

ψ
Q[ψ(Z) ̸= J ].

32
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2.2 Parametric Examples33

We consider Pθ = {N(θ, σ2) : θ ∈ R} with fixed σ2 and consider ρ(θ, θ′) := |θ − θ′| and
ρ(θ, θ′) := |θ − θ′|2. We are given a collection Z = (Y1, · · · , Yn) of i.i.d. samples drawn from a
N(θ, σ2) distribution and we use Pnθ to denote this product distribution. We set θ = 2δ to ensure
that 0 and θ are 2δ-separate. Here δ is fixed and is to be specified later. We have (proved at the
end of this example)

∥Pnθ − Pn0 ∥2
TV ≤ 1

4[e4nδ2/σ2 − 1]

and thus
1 − ∥Pnθ − Pn0 ∥TV ≥ 1 − 1

2

√
e4nδ2/σ2 − 1.

Setting δ = 1
2
σ√
n

, Eqn. (2.4) yields

inf
θ̂

sup
θ∈R

Eθ[θ̂ − θ |] ≥ δ

2

{
1 − 1

2
√
e− 1

}
≥ δ

6 = 1
12

σ√
n

and
inf
θ̂

sup
θ∈R

Eθ[(̂θ − θ)2] ≥ δ2

2

{
1 − 1

2
√
e− 1

}
≥ δ2

6 = 1
24
σ2

n
.

It remains to bound the total-variation distance. First, we have

∥P,Q∥2
TV ≤ 1

2

∫
p log p

q
dν ≤ 1

2 log
∫
p2

q
dν ≤ 1

2

(∫
p2

q
dν − 1

)
,

where the first inequality uses Lemma 1; the second inequality uses Jesen’s inequality, and the last
one is because of ln z ≤ z − 1. It remains to bound the integral for N(θ, σ2) and N(0, σ2):

[∫ 1√
2πσ2

exp
{

− 1
2σ2

[
(x− 2θ)2 − 2θ2

]}
dx

]n
= exp


(√

nθ

σ

)2
 ,

where we use the integral of the density is 1 in the equality. Note that the constant here is inferior.
On the other hand, the scalings σ/

√
n and σ2/n are sharp because the sample mean estimator X̄n

satisfies
sup
θ∈R

Eθ
[∣∣∣X̄n − θ

∣∣∣] =
√

2
π

σ√
n

and sup
θ∈R

Eθ
[(
X̄n − θ

)2
]

= σ2

n
.
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