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A NOTE ON MINIMAX OPTIMALITY

Wei Xiong *

May 24, 2023

1 Introduction

We are interested in the minimax optimality of various estimation procedures. In particular,
we are interested in obtaining the mathching lower bound on estimation rates. This note is for
Wainwright [2019].

1.1 Problem Setup

Given a class of distribution P, let § denote a mapping from a distribution P € P to a parameter
6(P) taking value in some space 2. We aim to estimate 6(P) based on a collection of samples { X}
i.i.d. drawn from P. Beyond the parameter estimation for the parametric distribution family, we
may consider P supported on [0, 1] with differentiable density function f and estimate:

o(P) = /Ol(f'(t))zdt eR.

Minimax risk. An estimator 6 can be viewed as a measurable function from X" to the
parameter space ). To assess the quality of any estimator, we consider a semi-metric p(é, 0*)
where 6* = 0(P). Here 6* is fixed, whereas 0 is a random variable so p(0, 6*) is also random. For
any fized 6%, 6 = 6* has zero risk but is meaningless as it can behave poorly for other choices of
the parameter. To circumvent this and related difficulties, one may use the Bayesian approach to
view 6* as a random variable with some prior distribution. Another approach is to consider the
worst-case risk suppep Epp(f, O(P)). An optimal estimator in this sense defines a quantity known

as minimax risk, namely,

R(O(P);p) := inf sup Epp(,0(P)), (1.1)

where the infimum is taken over all possible estimators. If the estimator is based on n i.i.d. samples
from P, we use R, to denote the associated minimax risk. We can also extend the definition with
a icreasing function ¢:

R(O(P); 6(p)) := inf sup Epd(p(0,0(P))). (1.2)
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A common choice is ¢(t) = t? which leads to the mean-squared error associated with p.

1.2 Preliminaries

We first introduce the notion of divergence measure. Let P and ) be two distributions on X
with density p and ¢ w.r.t. some base measure v. The total-variation (TV) distance is defined as

1P~ Qllry = sup |P(4) = Q)| = 5 [ Ipta) = ala)lu(a). (1.3

where the equivalence of two definitions is explored in Wainwright [2019], Exercise 3.13. We also
define the Kullback-Leibler divergence as

D@IIP) = [ ata)log {23 0(a). (1.4)

Unlike the total variation distance, KL-divergence is not actually a distance because it fails to be
symmetric. A third distance is the squared Hellinger distance, given by

#2(P1Q) = [ (Vo) — ) vl (15)

We have the following useful lemma.

Lemma 1. For all distributions P and @, we have

1
1P = @l = /5 D(QIIP),

| H(PlQ)
4 )

(1.6)
1P = Qllpy < H(PJ|Q)

where the first inequality is referred to as the Pinsker inequality and the second one is the Le Cam’s
inequality.

Packing. A d-packing of a metric space (T, p) is a set {8',--- ,0M} C T s.t. p(0?,67) > ¢ for all
i # j. The d-packing number M (§; T, p) is the cardinality of the largest d-packing. (The inequality
is not strict for convenience in the subsequent calculation.)

2 Le Cam’s Method

The Le Cam’s method relates the minimax risk to a Hypothesis testing whose risk can be
further lower bounded by the divergence introduced in Section 1.2. This can be used to establish
the statistical lower bound for the problems of interests.

Given a 2d-packing of Q: {#7 € Q:j=1,---, M}, we select a representative distribution P; for
each 67 to obtain {Py; : j =1,--- ,M}. We consider the following mixture distribution generating
process.
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o Sample a random integer J uniformly from [M];

e Given J = j, sample Z ~ Py; := P;.
We then denote @ as the joint distribution of (Z,J). Then, the marginal distribution of Z is
Q = ﬁ Zj]\il P;. We consider a testing function 1 : Z — [M] for the M-ary hypothesis testing
problem. So the associated probability of error is given by

QY (2) # J).

We have

Lemma 2 (From estimation to testing.). For any increasing function ¢ and choice of 26-separated
set, the minimax risk is lower bounded as

R(0(P); ¢(p)) 2 6(0) inf Qv (Z) # J]. (2.1)

Note that ¢(d) becomes smaller as 6 — 0. On the other hand, as 6 — 0, the testing becomes
more difficult and so that we should expect Q[ (Z) # J| grows as § decreases. We usually pick a
0* sufficiently small to ensure that R(6(P); ¢(p)) > co(6*) for some constant ¢ > 0.

Proof. For any P € P with 6§ = 0(P), we have

Erd(p(0,0)) > ¢(6)P[6(p(9,0)) > ¢(8)] > ¢(6)P[p(8,0) > 3],
where the first inequality follows from Markov’s inequality and the second one is because ¢ is
increasing. Since the superimum is always larger than the average (of a subset), we have
M

) 1 o(f g N,
]gtelgP[p(H,@) > 0] > M;P][f)(@’@]) > 0] = Q[p(0,67) > 4],

where the last inequality uses the joint distribution of (Z,J). It reduces to bound Q[p(8,6”) > 6]
then. We define the test associated with an estimator 6 by

Y(Z) := argmin p(6", D),
e[ M]

where the ties are broken arbitrarily. We claims that {p(67, ) < §} implies that the test is correct.
This is because for any other k € [M],

P (ek,é) > (ek,ef) 0 (ef,é) >25—35=206>p(67,0),
—_———— ——
>26 <é

where we use {¢¥; k € [M]} is a 2d-packing. By the decision rule of the test, we must have ¢)(Z) = j.
This implies that

P[p(0,0°) > 6] > Pj(w(Z) # j),
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and

Combined with

and

we have

sup Epd(p(0,0)) > ¢(6)Q[v(Z) # J.

pPeP

Finally, we take a infimum on the RHS for ¢ to obtain the desired lemma.

2.1 Binary Testing

In the binary testing case, the mixture distribution is
Q= %Po + %Pl.
For a fixed ¢ : Z — {0, 1}, the associated probability of error is
QAZ) # J) = SP(0(Z) £ 0) + L P(b(Z) £ 1).
Lemma 3 (Error probability to TV distance). We have
inf Q(2) £ J) = (1~ [Pt = Pollry |

This implies that

<

ROP): 6(p)) > 20

Proof. We define A := {z € X : ¢)(x) = 1}. Then,

[1—[|[P1 = Bollzy]-

M ‘

1 1 oy 1 1
sip Q(Z) =J] = j‘;‘;[ipl(“l) + §P0(A )] = sup, §[P1(A) - Po(A)] + 373

The result follows from

sup Q[(2) = J] = 1 — inf Q[(2) # J].
W P

1
=5 lP—

(2.2)

(2.3)

(2.4)

Pipy +

1

2
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2.2 Parametric Examples

We consider Py = {N(0,0%) : § € R} with fixed 02 and consider p(0,0") := |§ — | and
p(0,0") =10 — 0'|>. We are given a collection Z = (Y3,---,Y,) of i.i.d. samples drawn from a
N(0,0?) distribution and we use P} to denote this product distribution. We set 6 = 2§ to ensure
that 0 and 6 are 26-separate. Here ¢ is fixed and is to be specified later. We have (proved at the

end of this example)

]. 2 /42
2 5
1P — Fo'll7y < 1[6471 /7" —1]

1
1= [Py = Py = 1—5\/64"52/"2—1-

, Eqn. (2.4) yields

and thus

Setting § = %

S

inf sup Eg[0 — 6 || >
b 0eR

NGRS

{1—5@—1}22:10

and

~ 52 1 52 1 o2
110}f21€1£E9[(0 0)%] > 5 {1 2\/6 l} Z 5 54

It remains to bound the total-variation distance. First, we have

1 P 1 p* N
2
HPaQHTvﬁz/plqudVﬁzlog/qdl/§2</qdl/—1 )

where the first inequality uses Lemma 1; the second inequality uses Jesen’s inequality, and the last
one is because of In z < z — 1. It remains to bound the integral for N(6,0?) and N(0,0?):

et -alfe] —eo{ ()]

where we use the integral of the density is 1 in the equality. Note that the constant here is inferior.
On the other hand, the scalings o/y/n and 0% /n are sharp because the sample mean estimator X,

s [[%.- o = 27 ma

satisfies )

(o] -2
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