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1 Introduction4

We decide to (re)write this note because the author realizes that he is too vegetable to conduct5

some hard and rigorous analysis.6

We start with the famous concentration results in asymptomatic analysis.7

Theorem 1. Weak Law of Large Number. Let {Xn} be a sequence of i.i.d. random variables with
expectation EX1. Then,

1
n

n∑
k=1

Xk − EX1 → 0, (1.1)

in probability.8

Actually, this may hold even though the expectation or the second moment of X does not exist.9

However, practically, we may concern the non-asymptomatic analysis which means that we are10

given only finitely many samples and n will not go to infinity.11

2 Sub-Gaussian random variable12

We start with the famous Markov’s inequality.13

Theorem 2. Markov’s inequality. Let X be a non-negative r.v. in the sense that X ≥ 0 w.p. 1.
Then,

P (X ≥ t) ≤ EX

t
(2.1)

We note that in general, Markov’s inequality and Chebyshev’s inequality are sharp in the sense
that we can find some distribution for which the bound is tight. However, in many cases, we can
improve the O(1

t ) rate (or O( 1
t2 ) rate of Chebyshev’s inequality) to an exp(−t) rate. For instance,
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the standard normal distribution:∫ ∞

x
ϕ(t)dt =

∫ ∞

x

1√
2π

exp(−t2/2)dt

=
∫ ∞

x

1
t

1√
2π

t · exp(−t2/2)dt

= −1
t

1√
2π

exp(−t2/2)
∣∣∣∣∞
x

−
∫ ∞

x

(
− 1

t2

)(
− 1√

2π
exp(−t2/2)

)
dt

= ϕ(x)
x

−
∫ ∞

x

ϕ(t)
t2 dt

≤ ϕ(x)
x

,

where ϕ(x) = 1√
2π

exp(−x2

2 ). Therefore, some random variables can achieve an rate of O(exp(poly(t))).14

We want to find them beyond the normal distribution. We then motivate the sub-Gaussian random15

variables through a discussion for the moment generating function.16

Theorem 3. Inequality induced by generating function. If a random variable has a moment gen-
erating function ϕ(λ) = E[eλX ], for all λ > 0, we have

P (X ≥ t) ≤ E[eλX ]
eλt

= ϕ(λ)e−λt (2.2)

Proof.

P (X ≥ t) = P (eλX ≥ eλt) ≤ E exp(λX)
exp(λt)

It also holds that

P (X − EX ≥ t) = P (eλ(X−EX) ≥ eλt) ≤ E exp(λ(X − EX))
exp(λt) .

Since we can replace X − EX = Y , we only need to consider the mean-zero random variables.17

Remark 1. This theorem is super important because it motivates us to consider random variables
with an upper bound on the moment generating function. Moreover, the technique

P (X − EX > t) = P (exp(λ(X − EX) > exp(λt)) ≤ E exp(λ(X − EX))
exp(λt)

is standard and will be used throughout the rest of this note.18

This result implies that an upper bound for Eλ(X − EX) leads to an upper bound for the tail
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probability. For instance, for the normal distribution N(0, σ2), we have

E[exp(λX)] =
∫ ∞

−∞

1√
2πσ2

exp
(

λx − 1
2σ2 x2

)
dx

= e
λ2σ2

2

∫ ∞

−∞

1√
2πσ2

exp
(

− 1
2σ2

(
x − λσ2x

)2
)

dx

= exp(λ2σ2

2 )

Therefore, N(0, σ2) achieves a rate of O(exp(−t2)) if we take λ = t
σ2 :

P (X ≥ EX + t) ≤ exp(− t2

2σ2 ).

This motivates us to consider the class of sub-Gaussian random variables whose moment generating19

functions are bounded.20

Definition 1. Sub-Gaussian random variable. A random variable is said to be sub-Gaussian with
parameter σ2 if

E exp(λ(X − EX)) ≤ exp(−λ2σ2

2 ), ∀λ ∈ R. (2.3)

The definition requires that the moments of X exist and grow mildly because we have

E exp(λX) =
∞∑

k=0

λk

k! EXk.

Theorem 4. Tail bound of Sub-Gaussian random variable.

P (X ≥ EX + t) ≤ exp(− t2

2σ2 ),

P (X ≤ EX − t) ≤ exp(− t2

2σ2 ).
(2.4)

Proof. Using similar Chernoff-type techniques as in theorem 3 and minimized w.r.t. λ as in the21

normal distribution case.22

One important thing is that sub-Gaussian random variables are closed under linear combination.23

Theorem 5. Linear combination of sub-Gaussian random variables.24

• If X1, · · · , Xn are independent sub-Gaussian with parameter σ2
1, · · · , σ2

n, then Z = ∑n
i=1 Xi25

is sub-Gaussian with parameter
∑n

i=1 σ2
i ;26

• If X is sub-Gaussian with parameter σ2, then cX is sub-Gaussian with parameter c2σ2.27

Consequently, we have

P (
n∑

i=1
(Xi − EXi) ≥ t) ≤ exp(− t2

2∑n
i=1 σ2

i

), P (
n∑

i=1
(Xi − EXi) ≤ −t) ≤ exp(− t2

2∑n
i=1 σ2

i

) (2.5)
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Proof. The second property is easy to verify. The first one is because

E exp(λ(Z − EZ)) = E
[

n∏
i=1

exp(λ(Xi − EXi)
]

=
n∏

i=1
E exp(λ(Xi − EXi)

≤ exp(λ2
∑n

i=1 σ2
i

2 ).

28

Examples:29

• N(µ, σ2) is σ2-sub-Gaussian;30

• Bounded random variable on [a, b] is (b−a)2

4 -sub-Gaussian;31

The bounded random variable deserves a theorem!32

Theorem 6. Hoeffding’s inequality. Let X1, · · · , Xn be independent random variables s.t. Xi is
supported on [ai, bi]. Then,

P (
n∑

i=1
(Xi−EXi) ≥ t) ≤ exp(− 2t2∑n

i=1(bi − ai)2 ), P (
n∑

i=1
(Xi−EXi) ≤ −t)} ≤ exp(− 2t2∑n

i=1(bi − ai)2 )

(2.6)

Remark 2. There are also results related to the concentration of functions of random variables33

(beyond the linear combination). For instance, the McDiarmid’s inequality. However, since the34

authors do not know much about them, they are omitted here.35

3 Sub-Exponential random variable36

A slightly weaker condition than sub-Gaussianity is sub-exponentiality, which, for a mean-37

zero random variable, means that its moment generating function exists in a neighborhood of38

zero. Indeed, if the random variables have small variance, we would like to see it reflected in the39

exponential tail bound where the variance does not appear in Hoeffding’s inequality.40

We begin with an example of Laplace distribution with parameter 1: f(x) = 1
2 exp(−|x|.

P (|X| > t) = exp(−t), t ≥ 0

E exp(sX) = 1
1 − s2 , |s| < 1E exp(sX) = exp(2s2), |s| <

1
2

(3.1)

Clearly, it is not sub-Gaussian because its moment generating function does not exist for |s| > 1.41

The tails of this distribution do not decay as fast as the Gaussian variables. However, we can42

still find some useful bound through its moment generating function using similar technique for43

sub-Gaussian random variables44
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Definition 2. Sub-exponential random variable. A random variable X is said to be sub-exponential
with parameter (τ2, b) if

E[exp(λ(X − EX))] ≤ exp(λ2τ2

2 ), ∀|λ| ≤ 1
b

. (3.2)

Therefore, σ2-sub-Gaussian r.v. is (σ2, 0)-sub-exponential.45

Theorem 7. Tail bound of Sub-exponential random variable. Suppose that X is a sub-exponential
with parameters (τ2, b), then it holds that

P (X − EX ≥ t) ≤ exp(− t2

2τ2 ), 0 ≤ t ≤ τ2

b
;

P (X − EX ≥ t) ≤ exp(− t

2b
), t >

τ2

b
.

(3.3)

Similar bounds hold for the left side.46

Proof. We start with the same argument in the sub-Gaussian case. For all |λ| ≤ 1
b , we have

P(X ≥ t) ≤
E
[
eλX

]
eλt

≤ exp
(

λ2τ2

2 − λt

)
.

Denote g(λ) = λ2τ2

2 − λt. It remains to minimize g(λ). For each fixed t > 0, we know that g(λ)47

attains minimum at t
τ2 .48

Case 1: 0 ≤ t < τ2

b , i.e., t
τ2 < 1

b . So,

min
λ

g(λ) = g( t

τ2 ) = − t2

2τ2 .

Case 2: t/τ2 ≥ 1
b . In this case, since the function is monotonically decreasing in the interval

[0, λ∗), the constrained minimum occurs at 1
b and we have

min
λ

g(λ) = − t

b
+ 1

2b

τ2

b
≤ − t

2b

where the last inequality uses the fact that t/τ2 ≥ 1
b .49

Again, we are concerning X1+···Xn
n instead of X itself. The following result is useful.50

Theorem 8. Linear combination of sub-exponential random variables. Let X1, ..., Xn be indepen-
dent mean-zero sub-exponential random variables, where Xi is (σ2

i , bi)-sub-exponential. Then for
any vector ai ∈ Rn, we have

E[exp(λ
n∑

i=1
aiXi)] ≤ exp(λ2∑n

i=1 a2
i σ2

i

2 ), |λ| ≤ 1
b∗

, (3.4)
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where b∗ = maxi bi|ai|. In other words,
∑n

i=1 aiXi is (∑n
i=1 a2

i σ2
i , b∗)-sub-exponential. Then, it

holds that
P (

n∑
i=1

aiXi ≥ t) ≤ exp(−1
2

t2∑n
i=1 a2

i σ2
i

), 0 ≤ t ≤
∑n

i=1 a2
i σ2

i

b∗

P (
n∑

i=1
aiXi ≥ t) ≤ exp(−1

2
t

b∗∥a∥∞
), 0 ≤ t >

∑n
i=1 a2

i σ2
i

b∗

(3.5)

Proof. Inductively applying the condition for each random variable is sufficient. We first note that

E [exp (λaiXi)] ≤ exp
(

λ2a2
i σ2

i

2

)
, |λai| ≤ 1

bi
.

Then, it holds that

E
[
exp

(
λ

n∑
i=1

aiXi

)]
=

n∏
i=1

E [exp (λaiXi)] ≤
n∏

i=1
exp

(
λ2a2

i σ2
i

2

)
, ∀|λ| ≤ 1

b∗
.

51

3.1 Bernstein-type Bound52

Using a moment condition, we can obtain so-called Bernstein-type Bound.53

Definition 3. Bernstein condition. A random variable X with mean µ and variance σ2 is said to
satisfy the Bernstein condition if

E(X − µ)k ≤ k!
2 σ2bk−2, k ≥ 2 (3.6)

Theorem 9. Bernstein-type Bound. For any random variable satisfying the Bernstein condition,
we have

E exp(λ(X − µ)) ≤ exp( λ2σ2

2(1 − b|λ|)), ∀|λ| <
1
b

and moreover, the concentration inequality

P (|X − µ| ≥ t) ≤ 2 exp(− t2

2(σ2 + bt)), ∀t ≥ 0.

In particular, X is (
√

2σ, 2b)-sub-exponential. Finally, if X1, · · · , Xn are i.i.d. random variables
satisfying Bernstein condition with b. Then, it holds that

P ( 1
n

n∑
i=1

Xi − EX ≥ t) ≤ exp(− nt2

2(σ2 + bt))

P (
n∑

i=1
(Xi − EX) ≥ t) ≤ exp( −t2

2(nσ2 + bt))
(3.7)
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Proof. We assume µ = 0 W.L.O.G..

E[exp(λX)] = 1 + λ2σ2

2 +
∞∑

k=3

λkEXk

k!

≤ 1 + λ2σ2

2 + λ2σ2

2

∞∑
k=3

(|λ|b)k−2,

where we use the Bernstein condition in the last step. For any |λ| < 1
b , we can sum the geometric

series to obtain
E exp(λX) ≤ 1 + λ2σ2

2
1

1 − |λ|b
≤ exp( λ2σ2

2(1 − b|λ|)),

where we use ex ≥ 1 + x, ∀x ∈ R. To show that X is (2σ2, 2b)-sub-exponential, we note that for
|λ| < 1

2b , we have

E exp(λX) ≤ exp(λ2(
√

2σ)2

2 ).

Now we give a proof for the tail probability inequality. Note that we will not directly use E exp(λX) ≤
exp(λ2(

√
2σ)2

2 ) since we can get a sharper bound here.

P (X − µ ≥ t) = P (exp(λ(X − µ)) ≥ eλt) ≤ exp( λ2σ2

2(1 − b|λ|) − λt), ∀|λ| <
1
b

,

where we use Markov’s inequality and the above moment generating function bound in the last54

step. Setting λ = t
bt+σ2 < 1

b concludes the proof.55

Finally, we have

exp(λ( 1
n

n∑
i=1

Xi)) ≤
n∏

i=1
exp(

λ2 σ2

n2

2(1 − b|λ|/n))

= exp(
V( 1

n

∑n
i=1 Xi)λ2

2(1 − (b/n)|λ|) )

Therefore, 1
n

∑n
i=1 Xi satisfies Bernstein condition with b

n and 1
nσ2. Similarly, ∑n

i=1 Xi satisfies56

Bernstein condition with b and nσ2.57

Example: we shall focus on the random variable satisfying |X − EX| ≤ b. Then, the Bernstein58

condition is satisfied with b
3 . (the proof is tedious and is omitted. To prove this, it is sufficient to59

expand the exp(·) and note that k!
2 ≥ 3k−2 for k ≥ 2.) Therefore, we have:60

Theorem 10. Let Xi be a sequence of i.i.d. random variables such that |Xi − EXi| ≤ b. Then, it
holds that

P (
n∑

i=1
Xi − EX ≥ t) ≤ exp( −t2

2nσ2 + 2
3bt

) (3.8)
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3.2 Discussion61

Recall the Hoeffding-type inequality is of the form P (∑n
i=1 aiXi ≥ t) ≤ exp(− t2

2∥a∥2
2σ2 ). For62

small t, Bernstein-type bound behaves similarly to sub-Gaussian tail (exp(−t2)). For large t, the63

bound is weaker (exp(t)). However, we find that sub-exponential property sometimes can provide64

sharper inequality than that of sub-Gaussian because it uses the information of variance.65

Example. Suppose that the random variables Xi are i.i.d., mean-zero and satisfy Xi ∈ [−b, b]
with probability 1, but have variance σ2 = E[X2

i ] ≤ b2. Bernstein-type bound implies that

P

(
n∑

i=1
aiXi ≥ t

)
≤ exp

(
−1

2 min
{

5
6

t2

σ2∥a∥2
2
,

t

2b∥a∥∞

})

With the fact that 5/12 > 1/3 and taking ai = 1
n , we obtain that 1

n

∑n
i=1 Xi − 0 ≤ t w.p. at least66

1 − exp(−n min{ t2

3σ3 , t
4b}). We can take t = max{σ

√
3 log 1

δ
n , 4b log 1/δ

n } with probability 1 − δ. On67

the contrary, the bound via Hoeffding-type bound (which only uses the information of range) is68

b

√
2 log 1

δ√
n

.69

We can also have a interpretation from another point of view similar to the discussion above.
We consider a sequence of i.i.d. bounded random variables where Xi ∈ [a, b] and R = b − a. Then,
it holds that

Hoeffding : 1
n

n∑
i=1

Xi − EX ≤ R√
n

√
log(1/δ)

2 = Õ( R√
n

)

Bernstein : 1
n

n∑
i=1

Xi − EX ≤ 2
√

σ2 log(1/δ)√
n

+ 4b

3
log(1/δ)

n
= Õ( σ√

n
+ b

n
)

(3.9)

Therefore, for random variable with a small variance compared to its range, Bernstein’s inequality70

can give a sharper bound.71

3.3 Ond-sided Bound72

If we only have an upper bound for the range of X, it is still possible to derive one-sided bounds.73

Theorem 11. One-sided Bernstein inequality. If X ≤ b almost surely, then,

E exp(λ(X − EX)) ≤ exp
(

λ2EX2

1 − λb/3

)
, ∀λ ∈ [0, b/3)

P ( 1
n

(
n∑

i=1
Xi − EXi) ≥ t) ≤ exp

(
−nt2

2( 1
n(∑n

i=1 EX2
i ) + bt/3

) (3.10)

Proof. See proposition 2.14 in [3].74
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4 Martingale75

The inequalities provided so far are used for sum of independent variables. However, this is not76

true in general for multi-armed bandit and reinforcement learning. This is because the agent makes77

a decision based on the historic observations. For instance, the arm chosen in time 10 depends on78

Xa1 , Xa2 , · · · , Xa9 where Xat is the reward in time t and at is the distribution sampled in time t.79

However, we shall see that conditioned on the history and a10, Xa10 is sub-Gaussian if we assume80

it is bounded. We expect to have some concentration result in such a case.81

4.1 Martingale82

We consider {Xk}n
k=1: a sequence of independent random variables and a function f : Rn → R.

We are interested in the deviations of f(X) = f(X1, c . . . , Xn) from its mean. To analyze it, we
define Y0 = E[f(X)], Yn = f(X), and

Yk = E[f(X)|X1, · · · , Xk], k = 1, 2, · · · , n − 1,

where we assume that all conditional expectations exist. We have a telescoping decomposition

f(X) − Ef(X) = Yn − Y0 =
n∑

k=1
(Yk − Yk−1)︸ ︷︷ ︸

Dk

That is, f(X) − Ef(X) is written as a sum of increments {Dk}n
k=1. Here, {Yk}n

k=1 is a Doob83

martingale, whereas {Dk}n
k=1 is a martingale difference. More generally, we consider a sequence84

of σ-algebra {Fk}∞
k=1 s.t. Fk ⊂ Fk+1 for all k ≥ 1. The sequence is known as a filtration. For85

instance, in the above example, we have σ(X1, · · · , Xk) = Fk. We then have a sequence of random86

variables s.t. Yk is measurable w.r.t. Fk (also referred as adapted to the filtration {Fk}∞
k=1. Then,87

we have88

Definition 4. Martingale. {(Yk, Fk)}∞
k=1 is a martingale if for all k ≥ 1, we have

E|Yk| < ∞, E[Yk+1|Fk] = Yk. (4.1)

Frequently we can see that Fk = σ(X1, · · · , Xk). Moreover, if Fk = σ(Y1, · · · , Yk), we say89

{Yk} forms a martingale sequence. We find a somewhat easier interpretation and some examples90

will be provided later. Consider a sequence of random functionals ξ1(S1), · · · , ξn(Sn) where Sn =91

(Z1, · · · , Zn) and ξi is sub-Gaussian w.r.t. Zi with parameter σ2
i which possibly depends on Si−1.92

Then, we can still get some concentration result (Azuma-Hoeffding inequality which is provided93

later). For instance, consider the UCB-1 algorithm for the stochastic K-armed MAB with Zt = Xat94

and ξ(Sn) = 1∑n

t=1 I(at=k)
∑n

t=1 XatI(at = k).95

Example: Consider a sequence of i.i.d. random variables {Xk}. Let Fk = σ(X1, · · · , Xk) and
Sk = ∑k

j=1 Xj . Then,

E[Sk+1|Fk] = E[Xk+1 + Sk|X1, · · · , Xk] = µ + Sk.
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Therefor, {Sk} is not a martingale unless µ = 0. We can take Yk = Sk − kµ = ∑k
j=1(Xj − µ).96

Then, {Yk} is a martingale.97

Example: Doob construction. Let Xk
1 = (X1, · · · , Xk) and suppose E|f(X)| < ∞. Then,

E|Yk| = E|E[f(X)|Xk
1 ]| ≤ EE|f(X)| | Xk

1

where we use |E[f(X)|Xk
1 ]| ≤ E|f(X)||Xk

1 due to the convexity of | · |. It also holds that,

E[Yk+1|Xk
1 ] = E[E[f(X)|Xk+1

1 ]|Xk
1 ] = E[f(X)|Xk

1 ] = Yk,

where the last step we use the tower property of conditional expectation: For sub-σ-algebras
H1 ⊂ H2 ⊂ F , we have

E(E(X|H2)|H1) = E(X|H1),

where H1 = σ(Xk
1 ) and H2 = σ(Xk+1

1 ) here.98

Example: Likelihood ratio. Let f and g be two mutually absolutely continuous densities and
let {Xk} be a sequence of random variables i.i.d. from f . We define

Yk =
k∏

ℓ=1

g(Xℓ)
f(Xℓ)

.

Then the sequence {Yk} is a martingale w.r.t. {Xk} because

E[Yn+1|X1, · · · , Xn] = E| g(Xn+1)
f(Xn+1) |

n∏
k=1

g(Xk)
f(Xk) = Yn,

where the last step uses E g(X)
f(X) =

∫
f(x) g(x)

f(x)dx =
∫

g(x)dx = 1 (note they are mutually absolutely99

continuous).100

Example: Martingale difference.

E|Dk| < ∞, ,E[Dk+1|Fk] = 0.

Given a martingale {Yk}, we can take Dk = Yk − Yk−1 to obtain

E[Dk+1|Fk] = E[Yk+1|Fk] − E[Yk|Fk] = 0.

We have
Yn − Y0 =

n∑
k=1

Dk.
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4.2 Concentration bounds for martingale difference sequences101

We derive bounds for difference Yn−Y0, or as bounds for∑n
k=1 Dk (sum of martingale difference).

The main idea (from my understanding) is that we can replace the independence with

Ef(x1, · · · , xn) = E[E[f(x1, · · · , xn)|Fn−1]].

Theorem 12. Let {Dk, Fk} be a martingale difference and suppose that

E[exp(λDk)|Fk−1] ≤ exp(λ2τ2
k

2 ), ∀|λ| <
1
bk

,

i.e., conditionally sub-exponential(τ2
k , bk). Then, it holds that

∑n
k=1 Dk is sub-exponential (∑n

k=1 τ2
k , b∗)

where b∗ = max bk and

P

[∣∣∣∣∣
n∑

k=1
Dk

∣∣∣∣∣ ≥ t

]
≤

2e
− t2

2
∑n

k=1 τ2
k if 0 ≤ t ≤

∑n

k=1 τ2
k

b∗

2e− t
2b∗ if t >

∑n

k=1 τ2
k

b∗

(4.2)

Proof. The proof is standard: control the moment generating function, then apply Chernoff method.
We have

E
[
eλ(∑n

k=1 Dk)] = E
[
eλ
(∑n−1

k=1 Dk

)
E
[
eλDn | Fn−1

]]
≤ E

[
eλ
∑n

k=1 Dk

]
eλ2τ2

n/2.

Iterating this procedure yileds that

E
[
eλ(∑n

k=1 Dk)] ≤ exp(λ2
n∑

k=1

τ2
k

2 ), ∀|λ| <
1
b∗

.

102

We shall see that the above procedure also works for the conditionally sub-Gaussian case where103

b∗ = bk = 0. A special case is the bounded random variable and the corresponding famous Azuma-104

Hoeffding inequality.105

Theorem 13. Azuma-Hoeffding inequality. Let {Dk, Fk} be a martingale difference where there
are constants {(ak, bk)} s.t. Dk ∈ [ak, bk] for all k ≥ 1. Then, for all t ≥ 0, we have

P (|
n∑

k=1
Dk| ≥ t) ≤ 2 exp(− 2t2∑n

k=1(bk − ak)2 ) (4.3)

Proof. Note that Dk conditioned on Fk−1 is (bk−ak)2

4 -sub-Gaussian.106
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4.3 One-sided results107

Theorem 14. Azuma-Hoeffding, one side. Let Xi ∈ Fi and Fk−1 ⊂ Fk. If it holds that

E[Xi − E[Xi]|Fi−1] = 0, Xi ≤ EXi + Ri,

then it holds that
P (

n∑
k=1

(Xk − EXk) ≥ t) ≤ 2 exp(− 2t2∑n
k=1 R2

i

) (4.4)

Note that it means that {Xk − EXk} is a martingale difference. Similarly, we have108

Theorem 15. Azuma-Bernstein, one side. Let Xi ∈ Fi and Fk−1 ⊂ Fk. If it holds that

E[Xi − E[Xi]|Fi−1] = 0, Xi ≤ EXi + R, V(Xi|Fi−1) ≤ σ2
i

then it holds that
P (

n∑
k=1

(Xk − EXk) ≥ t) ≤ 2 exp(− t2

2∑n
k=1 σ2

i + 2/3Rt
) (4.5)

5 Uniform Convergence109

Consider a supervised learning problem with hypothesis space H where |H| < ∞. We assume
(X, Y ) is sampled from some unknown distribution P (X, Y ). For a fixed a hypothesis f ∈ H, the
population risk is given by

L(f) = E(X,Y )∼P ℓ(f(X), Y ),

where ℓ(·, ·) is a loss function, e.g., ℓ(f(x), y) = 1
2(f(x)−y)2. Given a data set D = {(X1, Y1), · · · , (Xn, Yn)},

we also define the empirical risk as

L̂(f) = 1
n

n∑
i=1

ℓ(f(Xi), Yi).

Clearly, we have
EP L̂(f) = L(f), L̂(f) → L(f),

as n tends to infinity (under some mild condition of Law of Large Number). Actually, we can find110

that
√

n(θ̂ − θ∗) is asymptomatic normal under some regularization condition where we assume111

that H = {fθ : θ ∈ Θ}.112

What we care about? Suppose that we find a f̂ ∈ H by minimizing L̂(f), f ∈ H (e.g. we run
SGD/Adam) and assume that the minimizer of L(f) is f∗ ∈ H. Here we assume 0 ≤ ℓ(·, ·) ≤ 1 for
simplicity (sub-Gaussian assumption).

L(f̂) − L(f∗) =
(
L(f̂) − L̂(f̂)

)
︸ ︷︷ ︸

A

+
(
L̂(f̂) − L̂(f∗)

)
︸ ︷︷ ︸

B

+
(
L̂(f∗) − L(f∗)

)
︸ ︷︷ ︸

C
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We first note that B ≤ 0 because f̂ minimizes L̂(·). Then, we have

L(f̂) − L(f∗) ≤
(
L(f̂) − L̂(f̂)

)
︸ ︷︷ ︸

A

+
(
L̂(f∗) − L(f∗)

)
︸ ︷︷ ︸

C

≤ sup
f∈H

|L(f) − L̂(f)| +
(
L̂(f∗) − L(f∗)

)
≤ 2 sup

f∈H
|L(f) − L̂(f)|.

Clearly, we shall expect that |L̂(f) − L(f)| is small according to concentration inequality for each
fixed f ∈ H because they are sample mean and true expectation. However, we cannot obtain such
a result because

{ℓ(f̂(Xi, Yi) : i = 1, 2, · · · , n}

are not independent since f̂(·) is obtained via a minimization problem over the data set D and113

consequently the i.i.d. assumption over D does not hold for ℓ(Xi, Yi). This is the reason why we114

need a uniform convergence for all f ∈ H and clearly such a bound directly gives a generalization115

bound over L(f̂) − L(f∗).116

5.1 Technique to obtain uniform convergence bounds117

We first note that for a sequence of i.i.d. random variables {Xk}n
k=1, {f(Xk)}n

k=1 are also i.i.d.118

for a fixed function. In particular, the function f(·) does not relies on {Xk}n
k=1.119

Finite H. We take δf = δ
|H| to construct a concentration bound for each f ∈ H. Then, applying

a union bound over all f ∈ H:

P

(
sup
f∈H

|L(f) − L̂(f)| >

√
1

2n
log 2

δ/|H|

)
≤
∑
f∈H

P

(
|L(f) − L̂(f)| >

√
1

2n
log 2

δ/|H|

)

≤ |H| × δ

|H|
= δ,

(5.1)

where we use boundedness assumption in the second inequality to apply the Hoeffding’s inequality.120

We can apply the Hoeffding’s inequality here because f in P
(
|L(f) − L̂(f)| >

√
1

2n log 2
δ/|H|

)
is a121

fixed function instead of a function obtained via a minimization problem over D.122

Infinite H. We can first find a finite covering Hϵ of H s.t. for all f ∈ H, we can find some
fϵ ∈ Hϵ and

sup
x

|f(x) − fϵ(x)| < ϵ.

Then, we derive a uniform convergence result on Hϵ via union bound in the finite H case and obtain

13



that for all f ∈ H, we have

|L(f) − L̂(f)| = | 1
n

n∑
i=1

((fϵ − Efϵ) + (f − fϵ) + E(fϵ − f)) (Xi)|

≤ | 1
n

n∑
i=1

(fϵ − Efϵ)| + | 1
n

n∑
i=1

(f − fϵ)| + | 1
n

n∑
i=1

E(fϵ − f)|

≤
√

1
2n

log 2
δ/|Hϵ|

+ 2ϵ,

(5.2)

where |H|ϵ is referred to ϵ-covering number. Clearly, we can tolerate an exponential covering123

number, e.g., exp( c
ϵ ), exp( c

ϵ2 ) which will contribute to the generalization bound with poly(1/ϵ).124

The author is too vegetable to be aware of the general case but knows an example.125

Example: Let B, ϵ > 0 and consider S = {x ∈ Rp : ∥X∥2 ≤ B}. Then, we can find a ϵ-covering
w.r.t. ℓ2-norm with at most (3B

ϵ )p elements and we have

log(3B

ϵ
)p = p log(3B

ϵ
).

Roughly speaking, we have
L(f̂) − L(f∗) ≤ Õ( log |Hϵ|√

n
).

6 Other contents.126

• McDiarmid’ inequality (also referred as Bounded differences inequality, Lipschitz w.r.t. Ham-127

ming norm);128

• Concentration of functions of Gaussian random variables;129

• X is sub-Gaussian, then X2 behaves in a sub-Gaussian way;130

– [3] exercise 2.6;131

– X2 − EX2 is sub-exponential(16σ2), see note of MIT.132

• Maximum of sub-Gaussian;133

6.1 More Examples134

Similar issues arise in the setting of bandit and RL. In particular, the uniform convergence135

is required for the class of UCB algorithms. See the uniform concentration result (step 1) in [2];136

lemma 39 of [1], this example also demonstrates that we may get a sharper bound via Bernstein-type137

inequality; unstable issue in [4].138
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7 Reference139

This note is largely based on140

• Note on high-dimensional statistics by Philippe Rigollet and Jan-Christian Hutter;141

• Note on hign-dimensional probability by Ramon van Handel;142

• The book on high-dimensional statistics [3].143
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