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1 Introduction4

We are interested in the use of metric entropy. This note is for the chapter 5 of Wainwright5

[2019].6

2 Covering and Packing7

We consider a metric space (T, ρ).8

2.1 Definitions9

Definition 1 (Covering number). A δ-cover of a set T w.r.t. ρ is a set {θ1, · · · , θN } ⊂ T s.t. for
each θ ∈ T, there exists some i ∈ [N ] s.t.

ρ(θ, θi) ≤ δ.

The covering number N(δ; T, ρ) is the cardinality of the smallest δ-cover.10

N(δ; T, ρ) is called the metric entropy, which is non-increasing function of δ.11

• T = [−1, 1], ρ(a, b) = |a − b|:
N(δ; T, ρ) ≤ 1

δ
+ 1;

• T = [−1, 1]d, ρ(a, b) = |a − b|∞:

N(δ; T, ρ) ≤ (1
δ

+ 1)d;

• T = {0, 1}d, ρ(a, b) = 1
d

∑d
j=1 I(aj ̸= bj):

2d(1
2 − δ)2 log N(δ; T, ρ) ≤ log 2⌈d(1 − δ)⌉;
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where δ ∈ (0, 1
2).12

Definition 2 (Packing number). A δ-packing of a set T w.r.t. ρ is a set {θ1, · · · , θM } ⊂ T s.t. for
all distinct i, j ∈ [M ], we have

ρ(θi, θj) > δ.

The packing number M(δ; T, ρ) is the cardinality of the largest δ-cover.13

2.2 Estimate covering number via packing number14

The covering number and the packing number provide essentially the smae measure of the15

massiveness of a set, as summarized in the following lemma:16

Lemma 1. For all δ > 0, we have

M(2δ; T, ρ)≤N(δ; T, ρ)≤M(δ; T, ρ).

A direct application is for [−1, 1]d and ∥·∥∞. We can observe that in [−1, 1], {θi = −1+2(i−1)δ :
i = 1, 2, · · · ⌊1

δ ⌋ + 1} is a 2δ-packing. Therefore, we have

log N
(
δ; [0, 1]d, ∥ · ∥∞

)
≍ d log(1/δ).

2.3 Estimate covering number via volume ratio17

Covering is defined in terms of the number of balls, each of which is of a fixed radius and hence18

volume. The covering number is connected to the volume, stated in the following lemma.19

Lemma 2 (Volume ratios and metric entropy). Consider a pair of norms ∥·∥ and ∥·∥′ on Rd and
let B and B′ be their corresponding unit balls. Then, the δ-covering number of B in the ∥·∥′ satisfies

(1
δ

)d vol(B)
vol (B′)≤N

(
δ;B, ∥ · ∥′) ≤

vol
(

2
δB + B′

)
vol (B′) .

We have following immediate results.20

• If B′ ⊂ B, the upper bound becomes

(2
δ

+ 1)dvol(B);

• If we further take B = B′, we obtain

d log 1
δ

≤ log N(δ;B, ∥∥) ≤ d log(1 + 2
δ

);

• In particular, the unit ball in Euclidean norm can be covered by at most (1+2/δ)d balls with21

radius δ in the norm ∥·∥2.22
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2.4 Covering number of smooth functions23

We consider L-Lipschitz functions on [0, 1]d, i.e,

|f(x) − f(y)| ≤ L ∥x − y∥∞ , ∀x, y ∈ [0, 1]d.|

The set of all L-Lipschitz functions on [0, 1]d is denoted as FL([0, 1]d) and we have

log N∞
(
δ; FL

(
[0, 1]d

)
≍ (L/δ)d

We note that the metric entropy has an exponential dependence on the dimension d, which is a24

dramatic manifestation of the curse of dimensionality.25

3 Gaussian and Rademacher complexity26

The metric entropy plays a fundamental role in understanding the behavior of stochastic pro-
cesses. We consider a coolection of random variables

{Xθ : θ ∈ T}.

In particular, we consider a set T ∈ Rd and

{Gθ = ⟨w, θ⟩ : θ ∈ T}

with xi ∼ N(0, 1) i.i.d., which is known as the canonical Gaussian process associated with T. Its
expected supremum

G(T) := E sup
θ∈T

⟨θ, w⟩

is known as the Gaussian complexity of T, which measures the size of T in a certain sense. Replacing
the normal random variables with Rademacher random variables yields the Rademacher process:

{Rθ : θ ∈ T}

where

Rθ := ⟨ε, θ⟩ =
d∑

i=1
εiθi, with εi uniform over {−1, +1}, i.i.d. .

Its expected supremum
R(T) := E sup

θ∈T
⟨θ, ϵ⟩ .

We have the following lemma;27

Lemma 3. For any set T, we have

R(T) ≤
√

π

2 G(T).
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We also remark that there are sets for which the Gaussian complexity is substantially larger than28

the Rademacher complexity.29

We provide several examples.30

• The Euclidean ball of unit norm Bd
2:

R(Bd
2) =

√
d and G(Bd

2)/
√

d = 1 − o(1);

• Bd
1 is smaller than Bd

2 because:

R(Bd
1) = 1 and G(Bd

1)/
√

2 log d = 1 ± o(1);

• Bd
0(s) := {θ ∈ Rd : ∥θ∥0 ≤ s} and we consider Sd(s) := Bd

0(s) ∩ Bd
2(1) =

{
θ ∈ Rd | ∥θ∥0 ≤ s ,

and ∥θ∥2 ≤ 1}:

G
(
Sd(s)

)
≾

√
s log ed

s

We can also study a function class via its image, i.e.,

F(xn
1 ) = {(f(x1), · · · , f(xn)) : f ∈ F} ⊂ Rn.

If the function class F is uniformly bounded by b, then, we have

G
(

F (xn
1 )

n

)
= E

[
sup
f∈F

n∑
i=1

wi√
n

f (xi)√
n

]
≤ b

E [∥w∥2]√
n

≤ b.

4 Metric entropy and sub-Gaussian processes31

We aim to bound a expected suprema involving some process, which has its applications in32

deriving upper bounds for Rademacher complexity.33

Definition 3 (Sub-Gaussian processes). A collection of zero-mean random variables {Xθ : θ ∈ T}
is a sub-Gaussian process w.r.t. a metric ρX on T if

E
[
eλ(Xθ−Xθ̃)

]
≤ e

λ2ρ2
X

(θ,θ̃)
2 , ∀θ, θ̃ ∈ T, λ ∈ R.

By the Chernoff method, we obtain

P
[∣∣Xθ − Xθ̃

∣∣ ≥ t
]

≤ 2e
− t2

2ρ2
X

(θ,θ̄) .

Given a sub-Gaussian process, we use the notaiton NX(δ; T) to denote the δ-covering number of T
w.r.t. ρX . We start with a basic idea: by approximating T up to some accuracy δ, we may replace
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the supremum over T by a finite maximum over the δ-covering set, plus an approximation error
that scales proportionally with δ. We denote the diameter of T as

D = sup
θ1,θ2∈T

ρX(θ1, θ2).

Theorem 1 (Bound by one-step discretization.). For any δ ∈ [0, D] s.t. NX(δ, T) ≥ 10, we have

E

 sup
θ,θ̃∈T

(
Xθ − X

θ̃

) ≤ 2E

 sup
γ,γ′∈T

ρX(γ,γ′)≤δ

(
Xγ − Xγ′

) + 4
√

D2 log NX(δ; T).

We remark that due to Xθ0 is mean-zero, we have

E
[
sup
θ∈T

Xθ

]
= E

[
sup
θ∈T

(Xθ − Xθ0)
]

≤ E

 sup
θ,θ̃∈T

(
Xθ − X

θ̃

) .

Proof. The idea to approximate an infinite set with error is presented in this proof. For a given
δ > 0 and associated covering number N = NX(δ; T), we let {θ1, · · · , θN } be a δ-cover of T. For
any θ ∈ T, we can find some θi with ρX(θ, θi) < δ and

Xθ − Xθ1 = (Xθ − Xθi) + (Xθi − Xθ1)
≤ sup

γ,γ′∈T
ρX(γ,γ′)≤δ

(
Xγ − Xγ′

)
+ max

i=1,2,...,N
|Xθi − Xθ1 |

Similarly, we have

Xθ1 − Xθ̃ ≤ sup
γ,γ′∈T

ρX(γ,γ′)≤δ

(
Xγ − Xγ′

)
+ max

i=1,2,...,N
|Xθi − Xθ1 | .

Summing them up gives

Xθ − Xθ̃ ≤ 2 sup
γ,γ′∈T

ρX(γ,γ′)≤δ

(
Xγ − Xγ′

)
+ 2 max

i=1,2,...,N
|Xθi − Xθ1 | .

Since θ and θ̃ are arbitrary, ew conclude that

sup
θ,θ̃∈T

(Xθ − Xθ̃) ≤ 2 sup
γ,γ′∈T

ρX(γ,γ′)≤δ

(
Xγ − Xγ′

)
+ 2 max

i=1,2,...,N
|Xθi − Xθ1 | .

34

We can further optimize w.r.t. δ to obtain the optimal bound. For instance, we consider the
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Gaussian complexity:
G(T) ≤ min

δ∈[0,D]

{
G(T̃(δ)) + 2

√
D2 log N2(δ; T)

}
where N2 means Euclidean norm and

T̃(δ) :=
{
γ − γ′ | γ, γ′ ∈ T,

∥∥γ − γ′∥∥
2 ≤ δ

}
.

The G(T̃ is referred to as the localized Gaussian complexity. An analogous upper bound holds for
the Rademacher complexity in terms of a localized Rademacher complexity. To be specific, we use
Cauchy-Schwarz inequality to obtain

G(T̃(δ)) = E

 sup
θ∈T̃(δ)

⟨θ, w⟩

 ≤ δE [∥w∥2] ≤ δ
√

d

which leads to
G(T) ≤ min

δ∈[0,D]

{
δ
√

d + 2
√

D2 log N2(δ; T)
}

.‘ (4.1)

We provide several examples here. In particular, we will consider the image of a function class so35

it is useful to know the following relations among metric entropies:36

Lemma 4. Let ∥f − g∥n :=
√

1
n

∑n
i=1 (f (xi) − g (xi))2.Then, we have

log N2
(
δ; F (xn

1 ) /
√

n
)

≤ log N∞ (δ; F (xn
1 )) ≤ log N (δ; F , ∥ · ∥∞) .

Proof. This is because

∥f − g∥n ≤ max
i=1,...,n

|f (xi) − g (xi)| ≤ ∥f − g∥∞.

Note that we are concerning the empirical sets (images) for the first two terms.37

We have38

• We know that G(Bd
2) =

√
d(1 − o(1)). With the bound of entropy and the above result, we

have
G

(
Bd

2

)
≤

√
d

{1
2 + 2

√
2 log 5

}
;

• FL: the set of L-Lipschitz functions on [0, 1]:

G (FL (xn
1 ) /n) ≤ 1√

n
inf

δ∈(0,δ0)

δ
√

n + 3
√

cL

δ

 ≾ n−1/3

by setting δ = n−1/3.39
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5 Chaining and Dudley’s entropy integral40

The method used in last section only employs one-step discretization. The idea of chaining
method is to decompose the supremum into a sum of finite maxima over sets that are successively
refined so as to obtain tighter bounds. Let {Xθ : θ ∈ T} be a zero-mean sub-Gaussian process w.r.t
ρX and let D = supθ,θ̃ ρX(θ, θ̃). The δ-truncated Dudley’s integral is given by

J (δ; D) :=
∫ D

δ

√
log NX(u; T)du

We then have41

Theorem 2 (Bound via Dudley’s entropy integral). For any δ ∈ [0, D], we have

E

 sup
θ,θ⃗∈T

(
Xθ − X

θ̃

) ≤ 2E
[

sup
γ,γ′∈T

(
Xγ − Xγ′

)]
+ 32J (δ/4; D).

We can use it to derive bound for Rademacher complexity. Let S = Xn
1 and let RS(F) be the

empirical Rademacher complexity. Then,

RS(F) ≤ 4α + 12
∫ ∞

α

√
log N(ϵ, F , L2(Pn))

n
dϵ, (5.1)

where α ≥ 0 is arbitrary. If we further assume that f is bounded in [−1, 1], then we have

RS(F) ≤ inf
ϵ>0

ϵ +

√
2 log(N(ϵ, F , L2(Pn))

n

 ,

where L2(Pn)(f, f ′) :=
√

1
n

∑n
i=1(f(xi) − f ′(xi))2.42
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