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A Sufficient Condition of Sample-Efficient

Reinforcement Learning with General Function

Approximation

Wei Xiong

Department of Mathematics

Abstract

In this paper, we study reinforcement learning (RL) with general function approx-

imation, where either the value function or the model dynamics is approximated

by a given abstract hypothesis space. We propose the generalized eluder coeffi-

cient (GEC), which measures the hardness of generalization from the historical

in-sample error to the prediction error, and further serves to measure the hard-

ness of learning an RL problem. In terms of the algorithmic design, we propose

an optimization-based framework for RL with general function approximation,

following the general principle of “Optimism in the Face of Uncertainty” (OFU).

Compared to existing algorithms, the proposed framework does not explicitly

maintain the confidence set, and neatly handles both model-free and model-

based problems with a low GEC. Theoretical analysis shows that our regret

results match those provided by existing frameworks.
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Chapter 1

Introduction

1.1 Introduction

In a single-agent episodic Markov decision process (MDP), an agent interacts

with the environment by executing an action at each step after observing the

current state, collects an immediate reward, and receives an observation emitted

from the environment. Then, the next step begins and the game ends until the

agent reaches step H + 1 (referred to as the episode length or horizon). The

goal of the agent is to find an optimal policy, which maximizes her long-turn

cumulative reward. The process of finding such a (near-optimal) policy is referred

to as the learning in reinforcement learning (RL) [1]. In such a decision-making

problem, we face the trade-off between exploiting the current knowledge about

the environment from the data observed so far and exploring the unknown

by taking the decision that seems to be sub-optimal, betting on the fact that

observed data are not sufficient to truly identify the best option.

One of the core problems in RL is to identify the structural assumption that

permits sample-efficient learning, in the sense that we can find a near-optimal

policy in polynomial number of interactions with the environment. While the
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tabular MDP with finite state space and action space has been well studied

[2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12], the minimax regret bound of tabular setting

depends on the number of states S. However, in the modern RL, the state space

is usually extremely large or even infinite (e.g. Go with S = 10170, and Xiangqi

with S = 1040). This suggests that MDPs with large state space cannot be

handled without further structural assumptions. However, there are also many

applications showing that practical deep reinforcement learning (DRL) can be

quite sample-efficient (e.g. [13; 14; 15]). Motivated by these empirical successes

of DRL, a line of work is devoted to the function approximation setting where

we approximate the value function, policy, or model dynamic by an abstract

hypothesis set H (typically the neural network) [16; 17; 18; 19], first in the

linear case [20; 21; 22; 17; 23; 24; 25; 26] and is later extended to the general

function approximation [16; 27; 18; 19; 28]. However, the algorithmic design and

theoretical analysis in the function approximation scenario are still largely in a

case-by-case manner, and whether we can describe the complexity of the solvable

RL problems in a unified notion remains open.

One can generally summarize the exploitation-exploration trade-off in function

approximation into three steps: (i) estimate the hypotheses based on the data

collected so far (typically in a supervised manner); (ii) plan according to step (i)

and pick one hypothesis as the approximate ground truth, and (iii) explore the

environment to collect new data. Motivated by the classic result of supervised

learning, one may expect that (1) realizability (the true model f ∗ ∈ H) and (2)

bounded statistical complexity (e.g., VC dimension or the covering number of H)

are sufficient for RL because they jointly ensure a supervised guarantee in step

(i). Unfortunately, due to the distinct challenges arising from the online nature

of RL, we have a negative result, stating that learning a good policy is statisti-

cally hard even though the hypothesis class is realizable (see Proposition 1.2.9).

Therefore, we require certain additional assumptions for RL to solve the under-

2



lying MDP, at least in the worst case. In this paper, we focus on the MDP

with general function approximation and propose generalized eluder coefficient

(GEC), a unified complexity measure that generalizes the eluder coefficient con-

sidered in [28] and captures nearly all known solvable RL problems. Meanwhile,

we propose a unified optimization-based algorithmic framework, following the

general principle of “Optimism in the Face of Uncertainty” (OFU) [29; 30; 31],

which solves all problems with a low GEC.

From a high level, the GEC states that the problems have a certain structure

that on average, we can bound the prediction error on the next unseen sample by

the in-sample training error on the samples collected so far over the hypothesis

class H, in an online manner. This allows us to reduce the online RL problem

to a relatively well-studied in-sample supervised error estimation, which shares

similar spirits with [19], and also [32; 33] but with different reduction targets.

In terms of the algorithmic design, the proposed framework simply takes the

in-sample loss minimizer at each iteration but with a “feel-good” modification in

the objective function as inspired by [32]. Compared to the existing works, the

optimization subroutine is constraint-free and unifies many famous algorithms

with an elegant interpretation from GEC. Moreover, the analysis is standard and

simple, regardless of the considered problems.

The rest of this section is devoted to the problem setup and a comprehensive

review of related work. Then, we motivate and develop the GEC in Chapter 2

and propose our algorithm in Chapter 3. We then compare GEC with the existing

frameworks and discuss several challenges, and potential extensions of GEC in

Chapter 4. For a better presentation, some of the proofs in the main text are

compactly provided in Chapter 5. Finally, we conclude in Chapter 6.

3



1.2 Problem Setup

Markov decision process (MDP).AMDP is specified by a tuple (S,A, H,P, r),

where S is the state space, A is the action space, H is the episode length,

P = {Ph}Hh=1 and r = {rh}Hh=1 are the state transition kernels and reward

functions, respectively. For each h ∈ [H], Ph(·|x, a) is the distribution of the

next state given the state-action pair (x, a) at step h, rh(x, a) ∈ [0, 1] is the

deterministic reward given the state-action pair (x, a) at step h1. The key

property of the MDP is that the transition kernel satisfies the Markov prop-

erty, i.e., Ph(xh+1 | x1, a1, · · · , xh, ah) = Ph(xh+1 | xh, ah) for any h ∈ [H] and

(x1, a1 · · ·xh, ah, xh+1) ∈ Sh+1 ×Ah.

Figure 1.1: An illustration of MDP with episode length H.

A Markovian policy π = {πh : S → ∆A}h∈[H] maps each state to a distribution

over actions. Given a Markovian policy π, its Q-function and value function at

step h are defined as expected cumulative rewards, given the current state (or

1The results readily generalize to the stochastic reward as the uncertainty of reward is

non-dominating compared with that of state transition.
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state-action pair):

V π
h (x) = Eπ

[ H∑
h′=h

rh′(xh′ , ah′)
∣∣∣xh = x

]
,

Qπ
h(x, a) = Eπ

[ H∑
h′=h

rh′(xh′ , ah′)
∣∣∣xh = x, ah = a

]
.

It immediately follows that the following Bellman equation holds:

Qπ
h(x, a) = (ThV

π
h+1)(x, a) := rh(x, a)+Ex′∼Ph(·|x,a)V

π
h+1(x

′), ∀π, x, a. (1.2.1)

Here Th is referred to as the Bellman operator at step h. We also use π∗ =

{π∗
h}h∈[H], V

∗ = {V ∗
h }h∈[H], and Q

∗ = {Q∗
h}h∈[H] to denote the optimal (Marko-

vian) policy, optimal value function and optimal Q-function, respectively, where

they satisfy the following properties [1]:

Qπ∗

h (x, a) = Q∗
h(x, a) = sup

π
Qπ

h(x, a) ∀(x, a) ∈ S ×A,

V π∗

h (x) = V ∗
h (x) = sup

π
V π
h (x) ∀x ∈ S,

(1.2.2)

and one optimal policy π∗ is the greedy policy induced byQ∗. We remark that the

existence of an optimal Markovian policy is because of the Markovian property of

MDP. For general decision-making problems (e.g. partially observable MDP), the

optimal policy depends on the whole history. It is also well known that (Q∗, V ∗)

satisfies the Bellman optimality equation for any (h, x, a) ∈ [H]× S ×A:

Q∗
h(x, a) = (ThV

∗
h+1)(x, a), V ∗

h (x) = max
a∈A

Q∗
h(x, a). (1.2.3)

For simplicity, we additionally assume that the first state is a fixed one x1, which

does not hurt the generality because one can assume that there is a null state at

step 0 and then transits to step 1 according to the fixed state distribution. We

give an example of tabular MDP below.

Example 1.2.1 (Tabular MDP). A tabular MDP is a MDP with finite state

and action spaces. In this case, the transition kernel Ph can be represented by a

table of size |S × A| × |S|, where the (x, a, x′)-entry is Ph(x
′|x, a).

5



Function Approximation. Following [19], we assume that we have access to

a hypothesis class H = H1 × · · · × HH , which can be either model-based or

value-based, and we detail them as follows.

Example 1.2.2 (Model-based Hypothesis). A model-based hypothesis class H

is a set of models (transition kernel P and reward function r). In this case, for

any f = (Pf , rf ) ∈ H, we denote πf = {πh,f}h∈[H] and Qf = {Qh,f}h∈[H], Vf =

{Vh,f}h∈[H] as the optimal policy and optimal value functions corresponding to

the model f , respectively. We also denote the real model by f ∗.

Example 1.2.3 (Value-based Hypothesis for MDP). A value-based hypothesis

class H is a set of Q-function, that is, H = {Hh}h∈[H], where Hh = {Qh :

S×A → R}. For any f = {Qh}h∈[H], let Qf = {Qh,f = Qh}h∈[H], Vf = {Vh,f (·) =

maxa∈AQh,f (·, a)}h∈[H], and πf = {πh,f (·) = argmaxa∈AQh(·, a)}h∈[H]. We also

denote f ∗ = Q∗, where Q∗ is the optimal Q-function.

To further improve readability, sometimes we will also use F for a value-based

hypothesis, andM for a model-based hypothesis to distinguish them. We remark

that the main difference between value-based and model-based hypothesis spaces

is whether we use or learn the information of the transition kernel. Accordingly,

when the algorithm does not explicitly use the information of the transition

kernel, it is referred to as a model-free approach. The model-based algorithm

has a meaning similar to the model-based hypothesis. For each f ∈ H, we define

the Bellman residual as

Eh(f, x, a) := Qh,f (x, a)− (ThVh+1,f )(x, a). (1.2.4)

By (1.2.3), we know that Eh(f ∗, x, a) = 0 for all (h, x, a) ∈ [H]×S×A. Through-

out this paper, we will assume thatH contains f ∗ (c.f. Example 1.2.2 or Example

1.2.3), which is standard in the literature [e.g., 34; 18; 19; 28].

Assumption 1.2.4 (Realizability). We assume f ∗ ∈ H.

6



Remark 1.2.5 (Notions of realizability.). For the model-based hypothesis set

M, Assumption 1.2.4 means that the true model M∗ ∈ M. For the value-based

hypothesis F , Assumption 1.2.4 means that the Q∗ ∈ F . Clearly, model-based

realizability implies value-based realizability (if we consider the induced value

class {Qh,M : (h,M) ∈ [H] × M}). We will see that we can obtain a sharper

result with the model-based hypothesis under realizability in Chapter 3.

We now illustrate the notion of function approximation by the case of linear

MDP [17].

Example 1.2.6 (Linear MDP). MDP(S,A, H,P, r) is a linear MDP with a

(known) feature map ϕ : S ×A → Rd, if for any h ∈ [H], there exist d unknown

signed measures µh = (µ
(1)
h , · · · , µ(d)

h ) over S and an unknown vector θh ∈ Rd,

such that for any (x, a) ∈ S×A, we have Ph(· | x, a) = ⟨ϕ(x, a), µh(·)⟩ , rh(x, a) =

⟨ϕ(x, a), θh⟩. Without loss of generality, we assume that ||ϕ(x, a)|| ≤ 1 for all

(x, a) ∈ S ×A, and max{||µh(S)||, ||θh||} ≤
√
d for all h ∈ [H].

For linear MDP, both the transition kernel and the reward function are linear in

a known feature. As a special case, we can parameterize the tabular MDP by

taking the one-hot mapping for the state-action pair. :

ϕ(x1, a1) = (1, 0, · · · , 0)⊤ ϕ(xi, aj) = (0, · · · , 0, 1︸︷︷︸
(i−1)×|S|+j

, 0 · · · , 0)⊤. (1.2.5)

In this case, the linear feature will be of dimension d = |S||A|. But the linear

MDP can further handle the infinite state-action space. For linear MDP, we have

the following result.

Lemma 1.2.7. For any function V : S → [0, H − 1] and h ∈ [H], there exist

vectors βh, wh ∈ Rd with max{||βh||, ||wh||} ≤
√
dH, such that ∀(x, a) ∈ S × A,

the conditional expectation and Bellman update are both linear in the feature:

(PhV )(x, a) = ϕ(x, a)⊤βh, and (ThV )(x, a) = ϕ(x, a)⊤wh, (1.2.6)

where (PhV )(x, a) := Ex′∼Ph(·|x,a)V (x′).

7



We will prove this lemma as part of the proof of Example 2.2.5 for completeness.

By the Bellman equation (1.2.1) and the linearity of the Bellman operator in

linear MDP, one can take the linear function space as the hypothesis space for

the linear MDP, i.e., Hh = {Qh,f (·, ·) = ϕ(·, ·)⊤θh,f : ∥θh,f∥ ≤
√
dH} so that

Q∗
h ∈ Hh.

For a clear presentation, we additionally assume that |H| is finite. We note that

this is only for simplicity as it can be readily extended to the infinite hypothesis

space with a mild covering number by standard discretization technique.

Assumption 1.2.8 (Finite Hypothesis). We assume |H| <∞.

Learning process. For each time step t, the agent first picks a hypothesis

f t ∈ H. Then she collects a new trajectory ζth = {xt1, at1, rt1, · · · , xtH , atH , rtH}, by

following the greedy policy πf t induced by f t. Then, a new iteration begins.

Learning objective. We consider the following regret minimization problem

for T iterations in total:

Reg(T ) =
T∑
t=1

V ∗
1 (x1)− V πt

1 (x1).

The goal is to design an algorithm to solve the underlying MDP with a sub-linear

(in T ) regret. The following result shows that realizability itself is not sufficient

for sample-efficient learning.

Proposition 1.2.9 (Realizability is not sufficient [35]). For any S ∈ N and

H ∈ N, there exists a class of horizon-H MDPs M with |S| = S, |A| = 2, and

log |M| = log(S). We suppose that the true model M∗ ∈ M (realizability), yet

any algorithm must have

EReg(T ) ≥
√

min{S, 2H} · T .

It is known that the regret guarantee can be transformed into the sample com-

plexity bound.
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Lemma 1.2.10 (Online-to-batch conversion). If an algorithm has a sublinear

regret of c†T 1−α with 0 < α ≤ 1, then the algorithm finds an ϵ-optimal policy

with at most (c†/ϵ)1/α samples. Here c† is a problem-dependent constant.

Proof. We denote the policy sequence as {π1, · · · , πT}. Then, by definition of

regret, we know

Reg(T ) = T · V ∗
1 (x1)−

T∑
t=1

V πt

1 (x1)

≤ c†T 1−α.

We consider the uniform policy π̃ := Uniform(π1, · · · , πT ). It follows that

V ∗
1 (x1)− V π̃

1 (x1) = V ∗
1 (x1)−

1

T

T∑
t=1

V πt

1 (x1) ≤ c†T−α := ϵ,

which implies that T = (c†/ϵ)1/α.

Additional notations. We use ∆X to denote the space of all distributions over

the set X . For some n ∈ N+, we use the convention that [n] = {1, · · · , n}. We

also let x1:n = {x1, · · · , xn}. For two distributions P,Q ∈ ∆X , the Hellinger

divergence D2
H(P,Q) is given by:

D2
H(P,Q) =

1

2

∫
X

(√
P (x)−

√
Q(x)

)2
dx = 1−

∫
X

√
P (x)Q(x)dx, (1.2.7)

where P and Q are probability mass functions or probability density functions.

We use f = O(g) or f ≲ g to hide the constant factor, i.e., f ≤ c · g for some

constant c > 0. We also use Õ to further omit logarithmic factors. To improve

the readability, we provide a summary of notations in Table 1.1.

9



Table 1.1: Summary of notations used in this paper.

Notation Explanation

S,A, H State space, action space, and episode length

S,A |S| and |A|

H Hypothesis space, H1 × · · · × HH

Eh(f, xh, ah) Bellman residual of hypothesis f at step h, (1.2.4)

⟨a, b⟩ Inner product of a and b

πf The greedy policy induced by f .

1(E) Indicator function of event E

I Identity matrix

Unif(X ) Uniform distribution over set X

|| · || The 2-norm by default.

x[i] The i-th entry of the vector x.

1.3 Related Work

The central problem in theoretical RL is to identify the structural assumption

that permits sample-efficient learning. We now present a comprehensive review

of the attempts and also the results we have collected so far in the literature.

Tabular MDP. For a tabular MDP, we assume that the state space S and action

space A are small. But we do not impose any structural assumption across states

and actions. The goal in the tabular case is to design algorithms that achieve

a regret depending polynomially on S,A and also the horizon H. The tabular

MDP has been extensively studied in the literature [2; 3; 4; 5; 6; 7; 36; 8; 9;

10; 11; 12]. Among them, [3] designs a model-based algorithm UCB-VI that

explicitly models the transition matrix of the MDP, and attains the minimax-

optimal regret boundO(
√
H2SAT ). After this, [5] proposes an optimistic variant

10



of Q-learning UCB-B, which is model-free because it directly learns the optimal

Q-value instead of the model dynamic, and attains a regret of O(
√
H3SAT )

with Bernstein-type bonus. This is later improved by [36] to close the gap to the

lower bound by leveraging the idea of variance reduction by a reference function

[37]. In comparison, the model-free algorithms typically require less time space

and storage space as compared to the model-based counterparts. Since both

the model-based and model-free algorithms attain the minimax-optimal regret

bound, the tabular settings are well-studied. However, since the lower bound

depends on the
√
SA, we cannot handle modern RL problems with large state

space without further structural assumptions.

To handle the large or even infinite state/action space, we need to impose addi-

tional structural assumptions across different states and actions. Motivated by

the empirical success of DRL, we will approximate either the model dynamics

(the transition kernel and the reward function, referred to as the model-based

approach) or the value functions (e.g. Q∗, V ∗, Qπ, referred to as the model-free

approach) by an abstract hypothesis space H. The primary goal is to design

algorithms that generalize across the large state-action space well and attain a

sub-linear regret bound in T and also with a mild dependence on H and other

problem-dependent parameters (e.g. d, dimension of the feature). In particular,

instead of depending on the number of states S, we expect that the regret bounds

scales with the statistical complexity of the function class (e.g. log |H| for finite

class or the log covering number logN for infinite class).

Linear function approximation and learnability. Linear function approxi-

mation is arguably the most fundamental one [20; 21; 22; 17; 23; 24; 25; 26; 38;

39; 40] in function approximation. Typically, we will assume that we have access

to a d-dimensional feature map of the state-action pair ϕ : S ×A → Rd. A natu-

ral idea is to assume that the optimal Q-value Q∗ is linear in this feature, where

we refer it as the linear Q∗ condition, in the sense that there exists a θh ∈ Rd

11



and ||θ∗h|| ≤ B:

Q∗
h(x, a) := ⟨ϕ(x, a), θ∗h⟩ , ∀h ∈ [H]. (1.3.1)

The main technical consideration is that due to the extra linear structure, we can

generalize from the visited states to the unseen states by the standard analysis of

linear regression (in comparison, the tabular MDP does not impose any structure

across states and actions so such a generalization is impossible). Then, we can

approximate the Q∗ by H := {Qh(x, a) = ⟨ϕ(x, a), θh⟩ : ||θh|| ≤ B, h ∈ [H]},

which satisfies the realizability assumption (Assumption 1.2.4). Unfortunately,

there exists a negative result [41], saying that this is not sufficient for sample-

efficient learning.

Proposition 1.3.1 (Linear-realizability is not sufficient [41]). There exists an

MDP with feature map ϕ that satisfies (1.3.1) but any algorithms must have

EReg(T ) ≳ min{2Ω(d), 2Ω(H)}.

To bypass this hardness result, [17] imposes a stronger assumption that both the

transition kernel and the reward function are linear in the feature, where we refer

to this condition as the linear MDP (Example 1.2.6). [17] designs an optimistic

variant of LSVI (Least Squares Value Iteration), referred to as the LSVI-UCB,

that achieves a regret of Õ(
√
d3H4T ). This result is recently improved by [39; 40]

to Õ(
√
d2H3T ), which matches the minimax lower bound in [26]. Another line of

work [24; 25; 22; 26] study the linear mixture MDP, where the transition kernel

is a linear mixture of a number of basis kernels and also has designed algorithms

based on linear regression to achieve the minimax-optimal regret bound. As we

will show in Chapter 2, the linear MDP and the linear mixture MDP essentially

limit the generalization from the historical data samples to the newly arrived

trajectory by limiting the freedom of the transition kernels and reward functions.

Such a generalization ability is Õ(d) in the complexity measure proposed in this

paper. We note that both the linear MDP and linear mixture MDP are rather

12



strong assumptions. There are also some works that consider linear realizability

different from (1.3.1). For instance, [42] assumes that the Q-value of any policy

is linear:

Qπ
h(x, a) = ⟨ϕ(x, a), θπh⟩ , ∀h ∈ [H].

It is shown that if we can query a simulator with (xh, ah) to get x
′ ∼ Ph(x

′|xh, ah)

and rh(xh, ah), the problem is sample-efficient. On the other hand, in the stan-

dard online setting where we always play the episode starting from x1, the learn-

ability of Qπ
h-realizability remains open.

Sample-efficient RL with general function approximation. While the

linear MDP assumption permits sample-efficient learning, it is rather limited

in practice. A long line of work extends to the general non-linear function

approximation and designs algorithms to effectively solve these RL problems.

Generally speaking, these works can be largely grouped into two categories (i)

impose certain low-rank structures so that some results in the linear MDP can

be generalized; (ii) limit the sequence length of effective state (and/or action)

distributions with respect to the hypothesis space. We now review them as

follows.

A line of work imposes a low-rank structure on certain parts of the RL prob-

lems. The seminal work [34] considers the model-free approach with value-based

hypothesis F and proposes the Bellman rank, which is imposed on the class of

induced Bellman residual: {Eπf
Eh(g, xh, ah) : f, g ∈ F}2. If we view this set as

a matrix of R|Π|×|F| with Π := {πf : f ∈ F}, the Bellman rank d is the rank of

the matrix, maximized over h ∈ [H]. In this case, the linearly independent rows

of the matrix one can find are at most d, thus limiting the generalization of the

problems. More generally, one can extend the finite-dimensional case by consid-

2The example presented here is referred to as the Q-type Bellman rank, which is different

from the V-type one considered in [34]. We choose the Q-type one for a clear presentation and

will discuss the V-type variant in Chapter 4.
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ering a bilinear structure. Specifically, we assume that we have two unknown

embeddings Wh : F → V and Xh : F → V where V is a Hilbert space such that

Eπf
Eh(g, xh, ah) = ⟨Wh(g)−Wh(f

∗), Xh(f)⟩ , (1.3.2)

where the Bellman rank can be described in terms of the information gain [43].

[34] also proposes OLIVE, based on the OFU principle and hypothesis elimi-

nation, to solve the problems with a low Bellman rank. After Bellman rank

and OLIVE, [27] shows that there exists an exponential separation between the

model-free approach and model-based approach, in the sense that the Bellman

rank of factored MDPs [44] can be exponentially large. Alternatively, [27] ex-

tends the idea of Bellman rank to the model-based setting, and proposes the

witness rank, to capture the factored MDPs. [19] generalizes them by proposing

the bilinear class, which assumes that the average Bellman error and a discrep-

ancy loss have a special bilinear structure. Moreover, the bilinear class allows

a flexible choice of “discrepancy function” to capture both the model-free and

model-based problems. [19] also proposes BiLin-UCB, which is more similar to

the optimism-based algorithms that have been analyzed in contextual bandit

[45; 46; 47]. Specifically, BiLin-UCB maintains a confidence set Ht at each itera-

tion where f ∗ ∈ Ht with high probability. Then, the agent chooses the estimator

with the highest value estimations (that is why we say it is optimistic) such that

the estimation is higher than that of the ground truth to encourage exploration:

f t = argmax
f∈Ht

V1,f (x1). (1.3.3)

Another line of work focuses on explicitly limiting the length of the longest

sequence of effective distributions with respect to the hypothesis space. [48] pro-

poses the notion of the eluder dimension, which generalizes the notion of linear

independence in Rd. The eluder dimension is later leveraged to RL by [49], which

includes the linear MDP [17] as a special example. However, [49] only character-

izes the eluder dimension of the hypothesis spaceH, and the covered problems are
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rather limited. [18] further considers the distributional eluder dimension on the

induced Bellman residual space (referred to as the Bellman eluder dimension) so

that the eluder dimension is imposed on the interplay between the function class

and the underlying MDP, and captures more RL problems. [17] also proposes

a model-free OFU-based algorithm, GOLF, which is also based on confidence

sets and optimism (1.3.3). The main difference between BiLin-UCB and GOLF

is that GOLF additionally assumes the Bellman completeness condition (see

Assumption 3.1.3) thus leveraging a minimax formulation [50] to give a more

efficient estimation of the Bellman errors (see Chapter 3 for a detailed interpre-

tation of these algorithmic choices). Consequently, GOLF achieves a
√
T -regret,

while BiLin-UCB only achieves a T 2/3-regret (by online-to-bach conversion). We

also note that [51] generalizes the Bellman completeness assumption to the more

general discrepancy function and applies the minimax formulation to achieve a

better regret bound.

It is known that neither the Bellman eluder dimension nor bilinear class captures

each other (see comments on page 6 of [19]). Attempts have been made since

then to unify these two rich tackable RL problems. [28] introduces the notion of

the eluder coefficient3 and studies the Q-type model-free problems. The eluder

coefficient d(µ) explicitly relates the out-of-sample average Bellman residual to

the in-sample average (squared) Bellman error:

H∑
h=1

T∑
t=1

EπftEh(f t, xh, ah) ≤ µ

H∑
h=1

T∑
t=1

t−1∑
s=1

Eπfs [Eh(f t, xh, ah)2] +
d(µ)

4µ
. (1.3.4)

Intuitively, the eluder coefficient quantifies the rate at which the prediction error

can grow in comparison to the cumulative training error on average in an online

manner, thus explicitly limiting the generalization from the visited state-action

distributions to the unseen part. Technically, we note that the eluder coefficient

3The eluder coefficient is referred to as the decoupling coefficient in [4]. However, we note

that the decoupling coefficient proposed in [32] is distinctly different from the eluder coefficient

in terms of intuition and technical consideration so we use the name eluder coefficient here.
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serves to reduce the RL problems into an in-sample error estimation problem

over the hypothesis space H in a supervised learning manner, which is relatively

well studied in the literature. Our complexity measure is mostly related to

this eluder coefficient, and we will extend it to more general RL problems in

Chapter 2, which can unify the Bellman eluder dimension and bilinear class. [28]

also proposes conditional posterior sampling with an optimistic modification in

the prior, and develops new analysis techniques for sampling-based algorithms.

There is also another line of work with distinct technical considerations compared

to the above-mentioned works. [33; 52] propose the decision estimation coefficient

(DEC) to unify the complexity measures in interactive decision-making, which

takes the MDPs as a special example. Given a model class M and a reference

model M̂ , the DEC is given by

decγ(M, M̂) = inf
p∈∆(Π)

sup
M∈M

Eπ∼p[V1,M(x1)− V π
1,M(x1)︸ ︷︷ ︸

regret of decision

−γ ·D2
H(M(π), M̂(π))︸ ︷︷ ︸
Easy to control

],

(1.3.5)

where V π
1,M(x1) is the V-value of policy π when M is the underlying model and

M(π) denotes the trajectory distribution jointly determined by the model M

and the executed policy π. The technical consideration is to convert the RL

problems into an online learning problem, by reducing the out-of-sample regret

to another out-of-sample divergence D2
H(M(π), M̂(π)). We note such a technical

treatment also arises in the decoupling coefficient proposed in [32; 53; 54]. The

idea of such a conversion may date back to the information ratio [55]. DEC

is a more general complexity measure that captures both the bilinear class and

Bellman eluder dimension. The most appealing part of DEC is the matching

lower bound in terms of DEC in some decision-making problems, which suggests

that a low DEC is necessary for sample-efficient learning. However, the vanilla

DEC (1.3.5) cannot be applied in a model-free manner. To address this issue,

[52] adopt an optimistic modification as in [32], and extend it to the model-free

scenario. However, the regret bound of the model-free E2D obtained in [52] is
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inferior compared to that of [19] under only realizability. We mention in passing

that [56] also independently studies the optimistic variant of DEC. A notable

feature of DEC is that it involves a minimax operation, which accounts for the

minimax subroutine in their algorithms, Estimation-to-Decisions (E2D). Such

a black box minimax subroutine may lack efficient computation guidelines in

practice and the DEC may not be applied to analyze the classic OFU-based or

sampling-based algorithms. In comparison, the decoupling coefficient [32; 53]

does not require solving a minimax problem, and can be applied to analyze

the optimistic algorithms based on posterior sampling or Maximum Likelihood

Estimation (MLE).

Decision-making problems with general function approximation are still an active

research direction and are still developing rapidly toward a deeper understanding

of the learnability and the goal of guiding the design of practical algorithms.
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Chapter 2

Complexity Measure, and

Examples

In this chapter, we introduce a complexity measure, called the generalized eluder

coefficient, that characterizes the hardness of an RL problem.

2.1 Regret Decomposition and Optimism

We start with the following value decomposition lemma.

Lemma 2.1.1 (Regret decomposition). Suppose that we execute πf t (i.e., the

greedy policy of f t) for each iteration. Then, it holds that1:

T∑
t=1

V ∗
1 (x1)− V

πft

1 (x1) =

T∑
t=1

[ H∑
h=1

EπftEh
(
f t, xth, a

t
h

) ]
−

T∑
t=1

[
(V1,ft (x1)− V ∗

1 (x1))︸ ︷︷ ︸
∆V1,ft (x1)

]

≤
T∑

t=1

H∑
h=1

Eπft

[
Eh
(
f t, xth, a

t
h

)]
−

T∑
t=1

H∑
h=1

Eπ∗
[
Eh
(
f t, xth, a

t
h

)]
.

(2.1.1)

The primary goal in this chapter is to control the first term under the expectation

1We defer the proof to Section 5.1.
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of πf t , which is tackable as we have access to both the sequence of {f t}Tt=1 and

will also make certain assumptions on H. In contrast, the second term is hard to

deal with because we have no idea about the optimal policy π∗. This is the main

technical reason why in the literature, we mainly consider algorithms that follow

the optimistic principle, such that ∆V1,f t(x1) ≥ 0 for all t ∈ [T ] so the second

term can be eliminated. We will return to this algorithmic design in Chapter 3.

With this lemma in hand, our target moves from the regret to the cumulative

Bellman residuals
∑T

t=1

∑H
h=1 Eπft

[Eh(f t, xth, a
t
h)].

2.2 Exploitation is Safe When the Generaliza-

tion is Limited

We motivate the complexity measure by analyzing the exploration-exploitation

trade-off in the context of RL. At the beginning of iteration t, the agent has

collected the data for the first t − 1 iterations: {ζsh}t−1
s=1. Then, the agent needs

to make decisions based on these historical samples, aiming to perform well on

the unseen trajectory at iteration t so as to achieve a low regret in the long run.

This requires certain extrapolation from the states already visited to the unseen

part of the state space. In other words, we shall be able to infer the trajectory

at iteration t by the knowledge of the history.

As an illustrative example, we first consider a class of linear function F = {f(·) =

ϕ(·)⊤θf : ||θf || ≤ 1} where ϕ(z) ∈ Rd. For simplicity, we also assume that

||ϕ(z)|| ≤ 1 for all z ∈ Z, which also implies that |f(z)| ≤ 1 for all z ∈ Z.

With the notation Σt = λI+
∑t−1

s=1 ϕ(zs)ϕ(zs)
⊤, for any f, g ∈ F , we relate their
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difference in the next unseen zt ∈ Z with the regularized in-sample error:

|f(zt)− g(zt)|2 = | ⟨ϕ(zt), θf − θg⟩ |2 ≤ ||ϕ(zt)||2Σ−1
t
||θf − θg||2Σt

≤ ||ϕ(zt)||2Σ−1
t

(
λ+

t−1∑
s=1

|f(zs)− g(zs)|2
)
,

(2.2.1)

where we use Cauchy-Schwarz inequality and expand Σt in the last inequality.

Therefore, the out-of-sample prediction error on the unseen zt can be bounded

by the (regularized) in-sample training error up to a factor of ||ϕ(zt)||2Σ−1
t
, where

||ϕ(zt)||2Σ−1
t

is referred to as the elliptical potential in the literature [47]. The

following lemma shows that for the linear model, the generalization is limited,

in the sense that the elliptical potential is small on average.

Lemma 2.2.1 (Exploitation is safe for linear model). We consider F = {f(·) =

ϕ(·)⊤θf : ||θf || ≤ 1} where ϕ(z) ∈ Rd and ||ϕ(z)|| ≤ 1 for all z ∈ Z. For any

sequence of {ft, gt, zt}Tt=1, we have

T∑
t=1

|ft(zt)− gt(zt)| ≤ Õ
([
d ·

T∑
t=1

[
λ+

t−1∑
s=1

(ft(zs)− gt(zs))
2
]]1/2)

.

Proof. Following the idea in (2.2.1), we decompose the prediction error into the

in-sample error and potential:

T∑
t=1

|ft(zt)− gt(zt)| =
T∑
t=1

|ft(zt)− gt(zt)|{1(||ϕ(zt)||Σ−1
t

≤ 1) + 1(||ϕ(zt)||Σ−1
t
> 1)}

≤
T∑
t=1

min{||ϕ(zt)||Σ−1
t
, 1}||θf t − θgt ||Σt +

T∑
t=1

1(||ϕ(zt)||Σ−1
t
> 1)

≲

√√√√ T∑
t=1

min{||ϕ(zt)||2Σ−1
t

, 1}

√√√√ T∑
t=1

||θf t − θgt ||2Σt
+ d log

(
1 +

1

λ

)
≤ Õ

([
d ·

T∑
t=1

[
λ+

t−1∑
s=1

(ft(zs)− gt(zs))
2
]]1/2)

,

where the first inequality uses |ft(zt) − gt(zt)| ≤ 1, and the second inequality

holds because of the Cauchy-Schwarz inequality and some calculations. Finally,

we invoke Lemma A.1.3 to bound the summation of elliptical potentials in the

second and last inequalities.
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The above lemma ensures that when the loss function (|f(·) − g(·)| in this ex-

ample) has a special linear structure, we can reduce the prediction error to the

in-sample error in an online manner. We can generalize this idea in the context

of RL.

Definition 2.2.2 (Eluder Coefficient). Given a MDP and a hypothesis class H,

the eluder coefficient d(ϵ) is the smallest d (d ≥ 0) such that for any sequence of

hypotheses {f t ∈ H}Tt=1, it holds that

T∑
t=1

V1,ft(x1)− V
πft

1 (x1)︸ ︷︷ ︸
prediction error

=

T∑
t=1

H∑
h=1

EπftEh(f t, xh, ah)

≤
[
d

H∑
h=1

T∑
t=1

t−1∑
s=1

(
EπfsEh(f t, xh, ah)

)2
︸ ︷︷ ︸

training error

]1/2
+ 2min{Hd,H2T}+ ϵB†T︸ ︷︷ ︸

burn-in cost

,

where B† > 0 is some problem-dependent constant for regularization.

The equality follows from the value decomposition lemma A.1.1 (also c.f. [16;

28]). Ignoring the burn-in cost, which is typically non-dominating, the eluder

coefficient suggests that the prediction error can be upper bounded by the cu-

mulative training error on average, although the training error is amplified by the

eluder coefficient. Therefore, the eluder coefficient can be used to measure the

hardness of such a generalization, thus further serving to measure the hardness

of learning the MDP. We make several remarks before continuing.

Remark 2.2.3. The definition presented here is similar to (1.3.4) from [28]

(up to a Cauchy-Schwarz inequality), except that the expectation is inside the

square in the training error. It turns out that this allows a more flexible choice

of algorithmic design, as we will detail in Section 3.

Remark 2.2.4. We introduce an expectation in the notion of loss, instead of

evaluating the loss at a specific point as in the Lemma 2.2.1. Therefore, the

implicit structure assumption is now imposed on the interplay between the MDP

and the hypothesis class, which allows this formulation to capture more problems.
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As a motivating example, we show that the linear MDP has a low eluder co-

efficient. The following proof heavily relies on the linear structure, but can be

generalized to analyze the bilinear class [19].

Example 2.2.5 (Linear MDP has a low eluder coefficient). For the linear MDP

defined in Example 1.2.6, if we take Hh = {Qh,f (·, ·) = ϕ(·, ·)⊤θh,f : ∥θh,f∥ ≤
√
dH}, then it has an eluder coefficient of d(ϵ) = O

(
Hd log(1 + T

ϵ
)
)
.

Proof. The first step is to show that the EEh (f t, xth, a
t
h) is linear, which can be

further controlled by the techniques presented in Lemma 2.2.1. We first prove

Lemma 1.2.7. For any V : S → [0, H − 1], we have

ThV (x, a) = rh(x, a) + (PhV )(x, a) = ϕ(x, a)⊤θh +

∫
S
V (xh+1) ⟨ϕ(x, a), dµh(xh+1)⟩

=
〈
ϕ(x, a), θh +

∫
S
V (xh+1)dµh(xh+1)

〉
:= ⟨ϕ(x, a), wh⟩ .

Therefore, the Bellman update of any V is linear in the feature ϕ(·, ·) and ||wh|| ≤
√
d · H by the regularization condition. The proof of PhV follows from setting

rh = 0. We are ready to prove the following lemma.

Lemma 2.2.6. For linear MDP with hypothesis classHh = {Qh,f (·, ·) = ϕ(·, ·)⊤θh,f :

∥θh,f∥ ≤
√
dH}, for any f ∈ H and h ∈ [H], there exists a Xh(·) : H → Rd such

that for any f, g ∈ H, EπgEh(f, xh, ah) = ⟨Xh(g), θh,f − wh,f⟩, where Qh,f (x, a) =

ϕ(x, a)⊤θh,f and ThVh+1,f (x, a) = ϕ(x, a)⊤wh,f . Moreover, by Definition 1.2.7, it

holds

sup
h,f∈[H]×H

max{||θh,f ||, ||wh,f ||} ≤
√
dH, and sup

h,f∈[H]×H
||Xh(f)|| ≤ 1.

Proof. By Lemma 1.2.7, we know that for any Vh+1,f associated with f ∈ H, we

can assume that there exists a wh,f ∈ Rd such that ThVh+1,f (·, ·) = ϕ(·, ·)⊤wh,f .

Meanwhile, for any Qh,f , it can be represented by Qh,f (·, ·) = ϕ(·, ·)⊤θh,f for some

θh,f ∈ Rd. As a result, for any f ∈ H, the Bellman residual is also linear:

Eh(f, xh, ah) = Qh,f (xh, ah)− ThVh+1,f (xh, ah) = ⟨ϕ(xh, ah), θh,f − wh,f⟩ .
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Therefore, we know that Xh(g) = Eπgϕ(xh, ah) satisfies the condition.

We now invoke the above result to establish the eluder coefficient of linear MDP.

Before continuing, we introduce the notation Σt;h = λI +
∑t−1

s=1Xh(f
s)Xh(f

s)⊤,

which is an estimation of the covariance matrix. It follows that

T∑
t=1

V1,ft(x1)− V πt

1 (x1) =

T∑
t=1

H∑
h=1

Eπft

[
Eh
(
f t, xth, a

t
h

)] (
1{∥Xh(f

t)∥Σ−1
t;h

≤ 1}+ 1{∥Xh(f
t)∥Σ−1

t;h
> 1}

)
≤ H ·

T∑
t=1

H∑
h=1

min

{
|
〈
Xh(f

t),
θh,ft − wh,ft

H

〉
|, 1
}
1{∥Xh(f

t)∥Σ−1
t;h

≤ 1}

+H ·
T∑

t=1

H∑
h=1

1{∥Xh(f
t)∥Σ−1

t;h
> 1}

≤ H ·
T∑

t=1

H∑
h=1

min

{
|⟨Xh(f

t),
θh,ft − wh,ft

H
⟩|, 1

}
1{∥Xh(f

t)∥Σ−1
t;h

≤ 1}+min{Hd̃,H2T},

(2.2.2)

where d̃ = 3Hd
log 2

log
(
1 + T

λ log 2

)
. Here the last inequality uses the fact that

||Xh(f
t)||Σ−1

t;h
cannot exceed 1 too much times as detailed in Lemma A.1.3. We

now fix a (t, h) in the first summation and proceed as follows:

min

{
|
〈
Xh(f

t),
θh,ft − wh,ft

H

〉
|, 1
}
1{∥Xh(f

t)∥Σ−1
t;h

≤ 1}

≤ ||
θh,ft − wh,ft

H
||Σt;h

·min{||Xh(f
t)||Σ−1

t;h
, 1}

=
1

H

[
λ||θh,ft − wh,ft ||2 +

t−1∑
s=1

| ⟨Xh(f
s), θh,ft − wh,ft⟩ |2

]1/2
·min{||Xh(f

t)||Σ−1
t;h
, 1}

≤
[
λd+

1

H2

t−1∑
s=1

(
EπfsEh(f t, xh, ah)

)2]1/2 ·min{||Xh(f
t)||Σ−1

t;h
, 1}

(2.2.3)

where the equality uses Σt;h = λI+
∑t−1

s=1Xh(f
s)Xh(f

s)⊤, and the last inequality

uses ||θh,f t − wh,f t|| ≤
√
dH and

⟨Xh(f
s), θh,f t − wh,f t⟩ = Eπfs

ϕ(xh, ah)
⊤(θh,f t − wh,f t)

= Eπfs

(
Qh,f t(xh, ah)− ThVh+1,f t(xh, ah)

)
.
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Plugging (2.2.3) into (2.2.2), we obtain that

T∑
t=1

V1,ft(x1)− V πt

1 (x1)

≤ H ·
T∑

t=1

H∑
h=1

[
λd+

1

H2

t−1∑
s=1

(
EπfsEh(f t, xh, ah)

)2]1/2 ·min{||Xh(f
t)||Σ−1

t;h
, 1}+min{Hd̃,H2T}

≤
( T∑

t=1

H∑
h=1

√
λdH +

T∑
t=1

H∑
h=1

[ t−1∑
s=1

(
EπfsEh(f t, xh, ah)

)2]1/2) ·min{||Xh(f
t)||Σ−1

t;h
, 1}+min{Hd̃,H2T}

≤
[ T∑
t=1

H∑
h=1

t−1∑
s=1

(
EπfsEh(f t, xh, ah)

)2]1/2[ T∑
t=1

H∑
h=1

min{||Xh(f
t)||2

Σ−1
t;h

, 1}
]1/2

+
[ T∑
t=1

H∑
h=1

λdH2
]1/2[ T∑

t=1

H∑
h=1

min{||Xh(f
t)||2

Σ−1
t;h

, 1}
]1/2

+min{Hd̃,H2T}

≤
[
d̃

T∑
t=1

H∑
h=1

t−1∑
s=1

(
EπfsEh(f t, xh, ah)

)2]1/2
+ 2min{Hd̃,H2T}+H2dTλ.

We conclude that linear MDP has an eluder coefficient of O
(
Hd log

(
1+ T

λ

))
.

As a direct corollary, we know that the tabular MDP also has a low GEC.

Example 2.2.7 (Tabular MDP has a low eluder coefficient). If we take the

feature map as in (1.2.5), then we know that the tabular MDP has a eluder

coefficient of Õ(|S|||A|).

2.3 Generalized Eluder Coefficient

To capture more generality, we allow a more flexible choice of the loss function

and distribution family. As a motivating example, we first introduce the following

linear mixture MDP [24; 22; 25].

Example 2.3.1. We say an MDP is a liner mixture model if there exists (known)

feature ϕ : S × A × S → Rd 2 and ψ : S × A → Rd; and (unknown) θ∗ ∈ Rd,

such that for all h ∈ [H] and (x, a, x′) ∈ S ×A× S, we have

Ph(x
′ | x, a) = ⟨θ∗h, ϕ(x, a, x′)⟩, rh(x, a) = ⟨θ∗h, ψ(x, a)⟩. (2.3.1)

2The case of Rd can be readily generalized to the general Hilbert space with the notion of

“effective dimension” [19].
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For regularization, we assume that ||θ∗h|| ≤ B for some constant B > 0.

Unfortunately, one cannot obtain a low eluder coefficient for linear mixture MDP

by taking the loss function as Eπfs
Eh(f t, xh, ah). However, it achieves a low eluder

coefficient by considering a different loss function. To this end, we define the

following generalized eluder coefficient.

Definition 2.3.2 (Generalized eluder coefficient). Given a MDP and a hypoth-

esis class H, the generalized eluder coefficient d(ϵ) is the smallest d (d ≥ 0) such

that for any sequence of hypotheses {f t ∈ H}Tt=1, it holds that

T∑
t=1

V1,f t(x1)− V
πft

1 (x1)︸ ︷︷ ︸
prediction error

≤
[
d

T∑
t=1

H∑
h=1

t−1∑
s=1

ℓsh(f
t)︸ ︷︷ ︸

training error

]1/2
+ 2min{Hd,H2T}+ ϵB†T︸ ︷︷ ︸

burn-in cost

.

We assume that ℓsh(f
∗) = 0 holds for any (s, h) ∈ [T ]× [H].

As compared to Definition 2.2.2, the generalized version allows different choices

of in-sample error. In general, ℓsh(·) is determined by some specific function (e.g.

Bellman error) and also a distribution induced by f s. One can take ℓsh(f) :=

EπsEh(f, xh, ah) to recover the eluder coefficient. The following example shows

that such a formulation strictly enriches the covered RL problems.

Example 2.3.3 (Linear mixture MDP has a low generalized eluder coefficient).

We consider the hypothesis space H = {f = (θ1,f , · · · , θH,f ) : ∀h ∈ [H], ||θh,f || ≤

B} and adopt the following loss function for linear mixture MDP:

ℓsh(f) := Eπfs

[
θ⊤h,f

[
ψ(xh, ah)+

∑
x′∈S

ϕ(xh, ah, x
′)Vh+1,fs(x′)

]
−rh(xh, ah)−Vh+1,fs(xh+1)

]
.

Then, for linear mixture MDP, its GEC satisfies d(ϵ) = Õ(Hd).

Proof. We defer the proof to Section 5.2.
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We can expand the loss function ℓsh(f) for a clear interpretation:

ℓsh(f) = Eπfs

[
rh,f (xh, ah)− rh,f∗(xh, ah)

+ Exh+1∼Ph,f (·|xh,ah)Vh+1,fs(xh+1)− Exh+1∼Ph,f∗ (·|xh,ah)Vh+1,fs(xh+1)
]
.

Clearly, the true model f ∗ achieves a loss of zero regardless of f s. On the other

hand, a hypothesis f suffers from a non-zero loss due to the difference in reward

function and transition kernel. Another interesting example is the following

Q∗-state abstraction model, where the agent faces many similar states so the

“effective” state may be small.

Example 2.3.4 (Q∗-state abstraction model [57]). A MDP is said to be a Q∗-

state abstraction model if there exists ξ : S → K so that for any h ∈ [H],

ξ(x) = ξ(x′) =⇒ Q∗
h(x, a) = Q∗

h(x
′, a),∀x, x′, a ∈ S × S ×A.

Then, we first choose the following feature maps: ϕ(·, ·) : S × A → R|K||A| and

ψ(·) : S → R|K|,

ϕ(x, a)[z, a′] = 1(ξ(x) = z, a = a′), ψ(x)[z] = 1(ξ(x) = z).

Accordingly, we can choose θh ∈ R|K||A|, wh ∈ R|K| and set the hypothesis class:

Hh = {||θh||2 ≤ B, ||wh|| ≤ B : max
a∈A

ϕ(x, a)⊤θh = ψ(x)⊤wh+1,∀x ∈ S}.

Then, the Q∗-state abstraction model has a low GEC of Õ(|K||A|) with

ℓsh(f) =
(
Eπfs

[ϕ(x, a)⊤θh,f − rh − Ex′∼Ph(·|x,a)ψ(x
′)⊤wh+1,f ]

)2
.

Proof. We defer the proof to Section 5.2.

In contrast to the tabular MDP which admits a GEC of Õ(|S||A|), the similarity

across different states leads to an easier game as we expect.

In [27], the authors show that there is an exponential separation between the

value-based method and model-based method, where the latter explicitly uses or
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studies the information of the transition kernel. To this end, in what follows, we

show that we can handle the model-based approach in our framework.

We now introduce the witness rank as an example of model-based RL with func-

tion approximation. [27] studies the case where Hh is the hypothesis class of Ph

(we assume that the reward function is known for simplicity). For witness rank,

we adopt a discriminator class V = {Vh : S ×A× S → [0, 1]}h∈[H].

Definition 2.3.5 (Q-type Witness Rank). We say an MDP has witness rank d

if given two models f, g ∈ H, there exists Xh : H → Rd and Wh : H → Rd such

that

max
v∈Vh

Eπf
[Ex′∼Ph,g(·|xh,ah)v(xh, ah, x

′)− Ex′∼Ph,f∗ (·|xh,ah)v(xh, ah, x
′)] ≥ ⟨Wh(g), Xh(f)⟩

κwit · Eπf
[Ex′∼Ph,g(·|xh,ah)Vh+1,g(x

′)− Ex′∼Ph,f∗ (·|xh,ah)Vh+1,g(x
′)] ≤ ⟨Wh(g), Xh(f)⟩ ,

(2.3.2)

where κwit ∈ (0, 1] is a constant. Moreover, we assume that supf∈H,h∈[H] ||Wh(f)||2 ≤

B and supf∈H,h∈[H] ||Xh(f)||2 ≤ B.

The definition presented here is slightly different from that of [27] and we will

discuss the extension in Chapter 4. Intuitively, the left-hand side of (2.3.2)

is the difference between some functions under the true model and the tested

hypothesis model. Such a difference can be naturally reduced to the difference

(distance) between the underlying distributions of these hypotheses when the

involved functions are bounded, as verified by the following result.

Example 2.3.6 (Witness rank is controlled by GEC). For the MDPs with a low

witness rank d, if we take ℓsh(f) = Eπfs
D2

H

(
Ph,f (· | xh, ah),Ph,f∗(· | xh, ah)

)
, we

have

d(ϵ) = O
(
dH · log

(
1 +

T

ϵκ2wit

)
/κ2wit

)
.

Proof. We defer the proof to Section 5.2.

Remark 2.3.7 (Q-type problem and V-type problem). The witness rank can be

defined for the Q-type problem and V-type problem. For the Q-type problem, we
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mean that the expectation in the training loss ℓsh(f
t) is taken with respect to the

distribution used to collect the samples in s-th iteration, which is also referred

to as the on-policy strategy [19]. Meanwhile, the V-type witness rank means

that in ℓsh(f
t), while the state follows the distribution at iteration s: xh ∼ πfs ,

the action may not follow πfs . Typically, the action is taken by following f t:

ah ∼ πf t or ah ∼ Unif(A). Such a formulation is unified in the formulation of

GEC but differs in the algorithmic design as we will detail in the next chapter.

To illustrate the idea of model-based function approximation, we introduce the

factored MDPs [27].

Example 2.3.8 (Factored MDPs). In factored MDPs, the state admits a fac-

tored structure. Specifically, we have S ⊂ Od where O is a discrete set and we

use x[i] to denote the i-th entry of the state. For each dimension, only a subset

pai ⊂ [d] of entries will influence it and we call them the parent set of the i-th

dimension. Mathematically, the transition probability is given by

Ph(x
′|x, a) =

d∏
i=1

P(i)
h (x′[i]|x[pai], a), ∀(h, x, a, x′) ∈ [H]× S ×A× S,

where P(i) is the transition kernel from x[pai], a to x′. If we let the hypothesis

space H contain all possible transitions, we can show that the factored MDP

admits a GEC of Õ
(
H3A3

∑d
i=1 |O||pai|

)
with

ℓsh(f) = Exh∼πfs ,ah∼Unif(A)D
2
H

(
Ph,f (·|xh, ah),Ph,f∗(·|xh, ah)

)
.

Proof. We defer the proof to Appendix 5.2.3.

[27] showed that there is an exponential separation between model-based and

model-free RL in this rich-observation setting. Specifically, the OLIVE algorithm

[34] requires Ω(2H) samples to solve factored MDP in the worst case, which means

that the Bellman rank or Bellman eluder dimension must be exponential in H.
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With the above examples in hand, we observe that the framework of GEC can

naturally handle both value-based (also referred to as the model-free) and model-

based problems. However, there are still two problems before we can eventually

solve the problems with a low GEC. First, on the left-hand-side of GEC, the

prediction error is
∑T

t=1 V1,f t(x1) − V
πft

1 (x1), while we care about the cumula-

tive error
∑T

t=1 V
∗
1 (x1) − V

πft

1 (x1). We briefly mentioned at the beginning of

this chapter that in the literature we mainly addressed this mismatch by opti-

mism, i.e., ensuring that V1,f t(x1) ≥ V ∗
1 (x1). But the implementation of such a

“hard” optimism may lead to several disadvantages from the viewpoint of prac-

tice. Second, on the right-hand side of GEC, the training error is typically in an

expected form, which is not directly available from the dataset and calls for the

construction of appropriate estimators. We will handle these two issues in the

next chapter with corresponding algorithmic designs.
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Chapter 3

Maximize to EXplore:

Algorithmic Design and

Theoretical Guarantee

We introduce the Maximize to EXplore (MEX) in this chapter, which is inspired

by the seminal work of feel-good Thompson sampling [32]. We start by addressing

the two issues mentioned at the end of the last chapter.

3.1 Loss Estimation

We recall the definition of the generalized eluder coefficient:

T∑
t=1

V1,f t(x1)− V
πft

1 (x1) ≲

[
d(ϵ)

T∑
t=1

H∑
h=1

t−1∑
s=1

ℓsh(f
t)

]1/2
where we omit the burn-in cost for a clearer presentation. To achieve a low

prediction error, it suffices to achieve a low cumulative in-sample error. To this

end, we introduce the following loss estimator based on the collected samples.

Definition 3.1.1 (Loss estimator with batch sampling). We consider a general
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sampling strategy where we samplem i.i.d. trajectories {ζki,h}mi=1
1 at each stage k

and assume that T is divisible by m without loss of generality. With K := T/m,

for each iteration k ∈ [K], we suppose that we have access to a loss estimator

L1:k−1
h (·) : H → R, which only depends on the history:

{f 1, (ζ1i,h)
m
i=1, f

2, (ζ2i,h)
m
i=1, · · · , fk−1, (ζk−1

i,h )mi=1}.

Moreover, it satisfies the following estimation error bound: with probability at

least 1− δ, it holds that for all (k, h, f) ∈ [K]× [H]×H

k−1∑
s=1

ℓsh(f) ≤ L1:k−1
h (f) + ∆k

h, (3.1.1)

and

L1:k−1
h (f ∗) ≤ ∆k

h. (3.1.2)

Intuitively speaking, (3.1.1) states that the loss estimator is an upper bound of

the in-sample training loss if we introduce a suitable confidence interval. Mean-

while, the loss estimator should well approximate the in-sample loss of the ground

truth up to the confidence interval.

The existence of such an estimator is trivial. For instance, when ℓsh(·) is bounded

by C2, one can always take L1:k−1
h (f) = 0 and ∆k

h = C2k. On the other hand,

we can do much better than this naive estimator, whose proofs are standard

applications of concentration inequalities. We remark that the loss estimators

introduced in this section are independently studied in the literature widely. The

main purpose here is to provide a new interpretation of these algorithmic designs

which better fit our framework.

We first focus on the value-based case, where the loss function is ℓsh(f) =(
Exh∼πfs ,ah∼πfs

Eh(f, xh, ah)
)2
. As a motivating example, if we want to estimate∑k−1

s=1(EXs)
2 with a collection of samples X1, · · · , Xk−1 from the underlying dis-

1Whenm = 1, we omit the subscript i for simplicity, which should be clear from the context.
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tribution sequence, we cannot directly use the loss estimator
∑k−1

s=1 X
2
s because

E
k−1∑
s=1

X2
s =

k−1∑
s=1

(EXs)
2

︸ ︷︷ ︸
Goal

+
k−1∑
s=1

σ2
s︸ ︷︷ ︸

Sampling variance

.

The error term of sampling variance grows linearly in the time steps and makes

it unaffordable. To address this issue, one straightforward idea is to replace Xs

with a sample mean to achieve a low variance.

Lemma 3.1.2 (In-sample error estimation with trajectory average [34; 19]).

Suppose that ℓsh(f) =
(
Exh∼πfs ,ah∼πfs

Eh(f, xh, ah)
)2
. We can independently sam-

ple m trajectories {ζki,h}mi=1 by following πfk for each k ∈ [K] and take

L1:k−1
h (f) =

k−1∑
s=1

Ls
h(f) := 2

k−1∑
s=1

[ 1
m

m∑
i=1

(
Qh,f (x

s
i,h, a

s
i,h)− rsi,h − Vh+1,f (x

s
i,h+1)

)]2
,

where it satisfies (3.1.1) and (3.1.2) with ∆k
h = 4(k−1)H2ιh

m
, and ιh = O(log(KH|Hh|/δ)).

Proof. We denote ϵsh(f) =
1
m

∑m
i=1(Qh,f (x

s
i,h, a

s
i,h) − rsi,h − Vh+1,f (x

s
i,h+1)) for no-

tation simplicity. For each fixed s, h, fh, the Azuma-Hoeffding inequality implies

that with probability at least 1− δ/(KH|Hh|), we have

∣∣∣ϵsh(f)− Eπfs
Eh(f, xh, ah)

∣∣∣ ≤ H

√
2 log(KH|Hh|/δ)

m
.

By (a+ b)2 ≤ 2a2 + 2b2, we further have

(
Eπfs

Eh(f, xh, ah)
)2 ≤ 2

(
ϵsh(f)

)2
+

4H2 log(KH|Hh|/δ)
m

.

Taking a union bound over [K], Hh and then h ∈ [H], with probability at least

1− δ, the inequality holds for all (s, h, f) ∈ [K]× [H]×H. Therefore, it satisfies

that
k−1∑
s=1

ℓsh(f) ≤ L1:k−1
h (f) +

4(k − 1)H2 log(KH|Hh|/δ)
m

.

To prove (3.1.2), we note Eh(f ∗, xh, ah) = 0 for any (xh, ah).
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The guarantee provided by Lemma 3.1.2 can be sub-optimal since we use m

samples for one hypothesis choice f t. We should view the Lemma 3.1.2 as

m ·
k−1∑
s=1

ℓsh(f) ≤ m · L1:k−1
h (f) + 4(k − 1)H2 · log(KH|Hh|/δ).

For a value-based approach, we can obtain a sharper estimator with the following

Bellman completeness condition.

Assumption 3.1.3 (Bellman Completeness). We consider a value-based hy-

pothesis Hh = Fh ⊂ {fh : S × A → R}. The hypothesis class is said to be

Bellman complete, if for each h ∈ [H], T ∗
h Fh+1 ⊂ Fh, where T ∗

h Fh+1 = {Thfh+1 :

fh+1 ∈ Fh+1} and

(T ∗
h fh+1)(x, a) := rh(x, a) + Ex′∼Ph(·|x,a) max

a′
fh+1(x

′, a′).

Bellman completeness is stronger than the realizability since by taking fH+1 = 0,

we can show that f ∗ ∈ F by Bellman completeness. However, completeness itself

is not desirable because adding a new function into the function class can destroy

such a property.

Lemma 3.1.4 (In-sample error estimation with minimax formulation [50; 18;

28; 51]). Suppose that ℓsh(f) =
(
Exh∼πfs ,ah∼πfs

Eh(f, xh, ah)
)2
. We set m = 1 so

T = K in this case. For each t ∈ [T ], we can collect the trajectory ζt by following

πf t and take L1:t
h (f) :=

∑t
s=1 L

s
h(f) where

Ls
h(f) =

(
Qh,f (x

s
h, a

s
h)−rsh−Vh+1,f (x

s
h+1)

)2− inf
f ′
h∈Hh

(
Qh,f ′(xsh, a

s
h)−rsh−Vh+1,f (x

s
h+1)

)2
,

where it satisfies (3.1.1) and (3.1.2) with ∆t
h = O(H2ιh) and ιh = log(H|Hh|T/δ).

Proof. We defer the proof to Section 5.3.

The main intuition of the minimax formulation is that it allows us to consider

the following loss function in the theoretical analysis:

L̃s
h(f) =

(
Qh,f (x

s
h, a

s
h)− rsh − Vh+1,f (x

s
h+1)

)2 − (ThVh+1,f (x
s
h, a

s
h)− rsh − Vh+1,f (x

s
h+1)

)2
,
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where the conditional expectation of the second term is exactly the sampling vari-

ance, thus canceling the variance term. The reason is that we can approximate

the second term (which is not available to the actually executed algorithm) by

inff ′
h∈Hh

(
Qh,f ′(xsh, a

s
h)− rsh − Vh+1,f (x

s
h+1)

)2
and the Bellman completeness con-

dition. The loss estimator in Lemma 3.1.4 is referred to as minimax formulation

[50] because it can be also written as

min
f∈H

max
f ′∈H

H∑
h=1

[(
Qh,f (x

s
h, a

s
h)− rsh − Vh+1,f (x

s
h+1)

)2 − (Qh,f ′(xsh, a
s
h)− rsh − Vh+1,f (x

s
h+1)

)2]
.

Remark 3.1.5. Both Lemma 3.1.2 and Lemma 3.1.4 can ensure a small aver-

age loss
∑t−1

s=1

(
Eπfs

Eh(f, xh, ah)
)2
. However, the minimax formulation further

ensures a small
∑t−1

s=1 Eπfs

(
Eh(f, xh, ah)

)2
, while the trajectory average cannot.

In addition to the model-free approach, we also handle the model-based case in

the following lemma.

Lemma 3.1.6 (In-sample error estimation of model-based method). Suppose

that ℓsh(f) = Eπfs
D2

H

(
Ph,f (· | xh, ah),Ph,f∗(· | xh, ah)

)
. We set m = 1 so

T = K in this case. For each h ∈ [H], we can take L1:t
h (f) :=

∑t
s=1 L

s
h(f) :=

1
2

∑t
s=1− logPh,f (x

s
h+1 | xsh, ash). However, implementing Algorithm 1 with Ls

h(·)

does not lead to a condition as required in Definition 3.1.1 for Ls
h(·) itself. The key

observation is that adopting Ls
h(·) is equivalent to implementing Algorithm 1 with

L̃s
h(f) = −1

2
logPh,f (x

s
h+1 | xsh, ash)+ 1

2
logPh,f∗(xsh+1 | xsh, ash) because we subtract

the same amount of loss for all hypotheses. Therefore, we can use it in our the-

oretical analysis, and it satisfies (3.1.1) and (3.1.2) with ∆t
h = log(H|Hh|/δ).

Proof. We defer the proof to Section 5.3.

The idea of using an equivalent L̃s
h(·) can be viewed as introducing a baseline in

the loss estimator. As long as the baseline is fixed for all f ∈ H, it leads to an

equivalent algorithm.
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Based on the plug-in principle, one can adopt the following choice of hypothesis

for each iteration k:

fk := argmin
f∈H

L1:k−1
h (f). (3.1.3)

The model-free version is referred to as the fitted Q-iteration (FQI) in the lit-

erature [58]. We may call (3.1.3) as Maximize to EXplore (MEX) since it only

involves an optimization sub-routine to balance the exploration and exploitation

simultaneously. MEX picks the hypothesis that best approximates the ground

truth. Unfortunately, this does not ensure a low regret bound or a mild sample

complexity. This is because a low cumulative prediction error does not necessar-

ily lead to a low regret because of the difference between V1,f and V ∗
1 .

To alleviate this issue, we need to adopt the principle of optimism into the

algorithmic framework, as detailed in the next subsection.

3.2 The Power of Optimism

In the literature, the terminology optimism is referred to as the inequality V1,f t(x1) ≥

V ∗
1 (x1), which means that our choice of the hypothesis always takes an optimistic

estimation about the initial value. The technical reason for such an algorithmic

choice is that (we omit x1):

T∑
t=1

V ∗
1 − V

πft

1 =
T∑
t=1

(
V1,f t − V

πft

1

)
+

T∑
t=1

(
V ∗
1 − V1,f t

)
≤

T∑
t=1

(
V1,f t − V

πft

1

)
, (3.2.1)

where the last term can be further related to the in-sample training error via

the GEC. To address the mismatch between V1,f and V ∗
1 , instead of achieving

optimism directly, we modify the MEX by adding another “feel-good” term into

the objective:

f t = argmax
f∈H

[
V1,f (x1)− η

t−1∑
s=1

H∑
h=1

Ls
h(f)

]
, (3.2.2)
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where η > 0 is a hyper-parameter to control the relative importance of the feel-

good term. The technical consideration of this modification is inspired by [32].

The difference is that we analyze an optimization-based framework, while [32]

focuses on the sampling-based one. Combining this new objective with the error

estimation introduced in the last section, we obtain the MEX in Algorithm 1,

where we further consider the more general batch sampling strategy.

Algorithm 1 Maximize to EXplore (MEX)

1: Input: Hypothesis space H , η > 0, batch size m > 0.

2: for k = 1, 2, · · · , K := T/m do

3: Select fk by solving

fk = argmax
f∈H

[
V1,f (x1)− η

H∑
h=1

L1:k−1
h (f)

]
. (3.2.3)

4: For each h ∈ [H], collect a batch of dataset {ζki,h}mi=1 by following πfk m

times.

5: end for

Comparison to existing OFU-based algorithms. The algorithm can be

viewed as a unification of the BiLin-UCB [19], GOLF [18], and OMLE [59], where

the generality is mainly from the flexible choice of the loss function. However,

the main difference is that we do not explicitly maintain a confidence set and

perform a constraint optimization subroutine on it. Instead, the optimism is

achieved implicitly via the feel-good term in the objective function. Meanwhile,

such a formulation can be viewed as the Lagrange relaxation of the constraint

optimization:

max
f∈F

V1,f

subject to
H∑

h=1

L1:k−1
h (f) ≤ βk,

(3.2.4)

where βk > 0 is the confidence radius of the confidence set. To the best of

our knowledge, such an implicit formulation is new in the literature of online
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RL and we believe that it helps to better illustrate the role of optimism in the

algorithmic design. We mention in passing that [60] has a similar algorithmic

idea in the pessimism-based offline setting. Combining this with the in-sample

error estimation bound, we can establish the main result of this paper.

Theorem 3.2.1. Under Assumptions 1.2.4 and 1.2.8, we consider the problem

with a low GEC d(ϵ) and the loss estimator given in Definition 3.1.1 with esti-

mation interval ∆k
h. Then, with η =

√
d(ϵ)/(2

∑H
h=1

∑K
k=1∆

k
h) > 0, Algorithm 1

satisfies that with probability at least 1− δ,

Reg(T ) ≤ 2
√
2m

√√√√d(ϵ)
H∑

h=1

K∑
k=1

∆k
h + 2m ·min{Hd,H2K}+ ϵB†T,

where T = mK.

Proof. We recall that the batch size is m, and the total iteration is K := T/m.

We denote ∆V1,f (x1) = V1,f (x1)− V ∗
1 (x1). It follows that

K∑
k=1

V ∗
1 (x1)− V πk

1 (x1) :=
K∑
k=1

V1,fk(x1)− V πk

1 (x1)−∆V1,fk(x1)

≤ −
K∑
k=1

∆V1,fk(x1) + η
H∑

h=1

K∑
k=1

( k−1∑
s=1

ℓsh(f
k)
)
+

1

η
· d+ 2min{Hd,H2K}+ ϵB†K

≤ −
K∑
k=1

∆V1,fk(x1) + η
H∑

h=1

K∑
k=1

(
L1:k−1
h (fk)

)
+ η

H∑
h=1

K∑
k=1

∆k
h

+
1

η
· d+ 2min{Hd,H2K}+ ϵB†K,

(3.2.5)

where the first inequality follows from the definition of GEC and Cauchy-Schwarz

inequality with a tuning parameter η > 0. The second inequality follows from

the definition of loss estimator (3.1.1). By the selection rule of Algorithm 1 (i.e.,

(3.2.3)), we know that

−∆V1,fk(x1) + η ·
H∑

h=1

L1:k−1
h (fk) ≤ η ·

H∑
h=1

L1:k−1
h (f ∗) ≤ η

H∑
h=1

∆k
h, (3.2.6)
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where the last inequality uses the definition of loss estimator (3.1.2) and ℓsh(f
∗) ≡

0. We plug (3.2.6) into (3.2.5) to obtain that

K∑
k=1

V ∗
1 (x1)− V πk

1 (x1) ≤ 2η
H∑

h=1

K∑
k=1

∆k
h +

1

η
· d+ 2min{Hd,H2K}+ ϵB†K

= 2

√√√√2d
H∑

h=1

K∑
k=1

∆k
h + 2min{Hd,H2K}+ ϵB†K,

where we take η =
√
d/(2

∑H
h=1

∑K
k=1∆

k
h) > 0. Since for each iteration, we

sample m trajectories in total, the final regret is given by:

Reg(T ) ≤ 2
√
2m

√√√√d

H∑
h=1

K∑
k=1

∆k
h + 2mmin{Hd,H2K}+ ϵB†T.

The theorem shows that the regret heavily relies on two components: (i) gener-

alized eluder coefficient d, which measures the cost of transforming the out-of-

sample error to the in-sample error; (ii) ∆k
h, which is the in-sample estimation

error over the hypothesis space H (more specifically, a trade-off between the

batch size m and the estimation error).

We can combine the in-sample error bounds to obtain the following corollaries.

Corollary 3.2.2 (Regret bound of model-free approach with trajectory average).

Under the same condition of Theorem 3.2.1, we suppose that we have access to

a loss estimator in Lemma 3.1.2. Then, when HK > d, by taking the batch size

as m = T
2
3 ι

1
3d−

1
3 and iteration K = T

1
3 ι−

1
3d

1
3 , with probability at least 1− δ, it

holds that

Reg(T ) ≲ d
(
1/(T 1/3B†)

) 2
3 ·HT

2
3 ι

1
3 ,

where ι = O(log(|H|KH/δ)).

Corollary 3.2.3 (Regret bound of model-free approach with minimax formu-

lation). Under the same condition of Theorem 3.2.1, we suppose that we have
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access to a loss estimator in Lemma 3.1.4. Then, when HK > d, by taking the

batch size as m = 1, with probability at least 1− δ, it holds that

Reg(T ) ≲
√
d
(
1/(

√
TB†)

)
·H2Tι.

where ι = O(log(|H|TH/δ)).

Corollary 3.2.4 (Regret bound of model-based approach). Under the same

condition of Theorem 3.2.1, we suppose that we have access to a loss estimator

in Lemma 3.1.6. Then, when HK > d, by taking the batch size as m = 1, with

probability at least 1− δ, it holds that

Reg(T ) ≲
√
d
(
1/(

√
TB†)

)
· Tι.

where ι = O(log(|H|H/δ)).

We note that the model-based approach gives a sharper in-sample training error

estimation than the model-free approach under Assumption 1.2.4, thus a sharper

regret bound in T (we remark that some H-dependence is hidden in the GEC of

witness rank). However, we would like to remark that the model-based realizabil-

ity is indeed much stronger than the model-free one. Suppose that we are given a

model classM such that the true modelM∗ ∈ M. We can takeH = H1×· · ·HH

and Hh = {Qh,M : M ∈ M} ∪ {(T M
h maxa′∈A fh+1(·, a′)) : fh+1 ∈ Hh+1} for all

M ∈ M, where T M
h is the Bellman operator under model M . By doing so,

we construct a value-based hypothesis H satisfying realizability and Bellman

completeness assumptions and |H| = |M|2.
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Chapter 4

Discussion, Potential Extension,

and Limitations

In this chapter, we compare our results with existing works, and discuss the

potential extensions and the limitations.

4.1 Relationship with Eluder Dimension

The eluder coefficient is closely related to the notion of the (distributional) eluder

dimension. In the context of RL, [18] applies the distributional eluder dimension

to the value-based hypothesis space and proposes the Bellman eluder dimension.

We now comment on the similarities and differences between them as follows.

We start by introducing the eluder dimension. [48], which is a generalization of

the linear independence for measuring the complexity of a general value-based

function class F . Different from the reductions presented in Chapter 2, whose

proof heavily relies on the linear structure, we discuss the relationship between

the eluder dimension and eluder coefficient in this section. We start with the
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definition of ϵ-dependence.

Definition 4.1.1 (ϵ-independence between distributions). Let G be a function

class defined on Z, and ν, µ1, · · · , µn be probability measures over Z. We say ν

is ϵ-independent of {µ1, µ2, · · · , µn} with respect to G if there exists g ∈ G such

that
√∑n

i=1(Eµi
[g])2 ≤ ϵ but |Eν [g]| > ϵ.

Definition 4.1.2 (Distributional eluder (DE) dimension). Let G be a function

class defined on Z, and Π be a family of probability measures over Z. The dis-

tributional eluder dimension dimDE(G,Π, ϵ) is the length of the longest sequence

{ρ1, · · · , ρn} ⊂ Π such that there exists ϵ′ ≥ ϵ with ρi being ϵ
′-independent of

{ρ1, · · · , ρi−1} for all i ∈ [n].

Intuitively, for any f ∈ F , the ϵ-dependence of the sequence means that if it is rel-

atively consistent on the historical distributions {µ1, · · ·µn} (i.e., (
∑n

i=1(Eµi
[g])2 ≤

ϵ2), the error on the new test distribution ν will also be small. On the other

hand, independence means that while g is consistent on the historical dataset,

it can suffer from a large prediction error in the newly arrived point z, which

is not desirable for our needs. The distributional eluder dimension simply says

that independence cannot happen too many times. The following lemma shows

that a problem with a low distributional eluder dimension also has a low eluder

coefficient.

Lemma 4.1.3. Suppose that a problem has a distributional eluder dimension

of dimDE(G,Π, ϵ) and suppose that |g| is bounded by H for all g ∈ G. Then, the

eluder coefficient satisfies d(ϵ) ≤ O(dimDE(G,Π, ϵ) log T ) in the following sense:

for arbitrary sequence of {(dt, gt) ∈ Π× G}Tt=1, we have

T∑
t=1

|Edtgt| ≤

√√√√d(ϵ)
T∑
t=1

t−1∑
s=1

(
Edsgt

)2
+min{Hd(ϵ), H2T}+ ϵHT.

The proof basically follows from [28] except that we need to use a more abstract

notion of function class and distribution to make the proof work in a more general
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sense. In particular, [61] uses the techniques from [28] to additionally handle the

V-type problems. We omit the proof for simplicity. In contrast, we note that

the problems with a low eluder coefficient can have a large eluder dimension, as

shown by the following lemma adapted from [62].

Lemma 4.1.4. Fix the time horizon T > 0 and H = 2. Let Gh := {Qh,f −

ThVh+1,f : f ∈ H} be the set of Bellman residuals induced by H at step h, and

Πh be a collection of probability measure families over S×A induced by following

πf , with f ∈ H. Then, there exists a class of MDPs such that the distributional

eluder dimension dimDE(Gh,Πh, 1/T
1/3) is lower bounded by Ω(T 1/3), while the

eluder coefficient d(ϵ) is upper bounded by O(log T ), regardless of the ϵ, in the

sense of: for an arbitrary sequence of {(f t) ∈ H}Tt=1, we have

T∑
t=1

V1,f t(x1)−V
πft

1 (x1) ≤

√√√√d(ϵ)
T∑
t=1

2∑
h=1

t−1∑
s=1

Eπfs
Eh(f t, xh, ah)2+min{Hd(ϵ), H2T}+ϵHT.

Comparison with eluder dimension in terms of generality. Both the

eluder coefficient and eluder dimension limit the degree to which we can be sur-

prised by the unseen trajectory ζt ∼ πf t given the historical dataset {ζ1, · · · , ζt−1}.

However, the eluder coefficient further takes the magnitude of the prediction er-

ror into consideration, while the eluder dimension only considers the frequency.

In particular, Lemma 4.1.4 shows that there exists an exponential separation

between the eluder coefficient and eluder dimension in certain cases.

Comparison with eluder dimension in terms of applicability. It is worth

noting that in the literature of eluder dimension [48; 49; 18], to apply the eluder

dimension in analysis, the algorithms must attain an increasing sequence of up-

per bounds for the in-sample error (e.g.
∑t−1

s=1(Eπfs
Eh(f t, xh, ah)

2 ≤ βt, βt is

increasing in t). This prevent the eluder dimension from being used to analyze

Algorithm 1 and also the posterior sampling [28; 53; 61]. On the other hand, the

eluder coefficient can be used to analyze all of these algorithms.
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4.2 Comparison with Other Existing Works

Comparison with Bellman eluder dimension [18] and bilinear class [19].

We have present the detailed comparison with the eluder dimension in last section

so we focus on the bilinear class here.

Definition 4.2.1 (Bilinear Class). Given an MDP, a hypothesis class H, and

a discrepancy function l = {lf : H × (S × A × R × S) × H → R}f∈H, we say

the RL problem is in a bilinear class if there exist functions Wh : H → Rd and

Xh : H → Rd, such that for all f ∈ H and h ∈ [H], we have∣∣Eπf
[Qh,f (xh, ah)− r (xh, ah)− Vh+1,f (xh+1)]

∣∣ ≤ |⟨Wh(f)−Wh (f
∗) , Xh(f)⟩| ,∣∣Exh∼πf ,ah∼π̃ [lf (g, xh, ah, rh, xh+1)]

∣∣ = |⟨Wh(g)−Wh (f
∗) , Xh(f)⟩| ,

(4.2.1)

where π̃ is either πf (Q-type) or πg (V-type). Moreover, it is required that

supf∈H,h∈[H] ||Wh(f)||2 ≤ B and supf∈H,h∈[H] ||Xh(f)||2 ≤ B.

Similar to the witness rank [27], the bilinear class also assumes that the MDP

admits certain bilinear structure so can be reduced to the GEC with similar

techniques. We omit the proof to avoid repetition and refer interested readers

to [61] for the complete proof. For bilinear class, the GEC satisfies d(ϵ) =

Õ(dH) with the discrepancy loss ℓsh(f
t) := (Exh∼πfs ,ah∼π̃lfs(f t, xh, ah, rh, xh+1))

2.

Therefore, GEC subsumes the bilinear class as a subset.

Comparison with DEC [33]. The technical consideration of DEC (1.3.5) is

to convert the RL problems into an online learning problem, by reducing the

out-of-sample regret to another out-of-sample divergence D2
H(M(π), M̂(π)). In

contrast, GEC reduces the out-of-sample regret to an in-sample training error

over the past t−1 iterations. Both GEC and DEC can capture most of the known

tackable RL problems so far. But since there exists the matching lower bound in

terms of DEC in some decision-making problems, it is possible to construct some
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instance that is covered by DEC but not GEC. In terms of algorithmic design,

however, DEC is mainly used to analyzed the E2D algorithm proposed in [33]

and cannot apply to the classic posterior sampling algorithms and OFU-based

algorithms. In contrast, GEC can be used to analyze both of them, and also the

MEX algorithm proposed in this paper. Meanwhile, the E2D algorithm requires

to solve a minimax optimization problem so lacking general implementation guid-

ance in practice, while the MEX algorithm presented in this paper can be readily

approximated as shown in [63]. Moreover, the regret bounds obtained from the

framework of DEC are often sub-optimal. For instance, according to [52], for

the bilinear class with only realizability, DEC only gives a bound of order T 3/4,

while GEC gives a bound of order T 2/3.

Comparison to the sampling-based algorithmic frameworks. It is possi-

ble to apply GEC to the posterior sampling framework. [61] extends the condi-

tional posterior sampling proposed in [28] to a more generic algorithmic frame-

work and can also handle all the problems studied in this paper. In comparison,

the sampling-based framework in [61] requires knowledge of the environment

by assuming that we have access to a good prior distribution that approxi-

mately satisfies the Assumption 1.2.4 and the Assumption 3.1.3. In contrast, the

optimization-based framework presented in this paper does not require knowl-

edge of the environment. However, we do remark that while the algorithms in

[61] and this paper achieve similar theoretical guarantees, empirical studies show

that sampling-based algorithms are usually superior in practice (including [64]

for bandit, and [65] for RL).

4.3 Extension and Challenges

We discuss several extensions and limitations of the framework presented in this

paper.
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4.3.1 V-type Variant

In the literature (e.g. [34; 18]), the examples introduced in the previous sections

are referred to as the “Q-type” problems, which means that the expectation in

the training loss ℓsh(f
t) is taken with respect to the distribution used to collect

the samples in s-th iteration. Meanwhile, in the literature, we also consider the

V-type problems where main difference is that for the V-type problem, in ℓsh(f
t),

while the state follows the distribution at iteration s: xh ∼ πfs , the action is

taken by following f t: ah ∼ πf t . Such a formulation is unified in the formulation

of GEC by an abstract choice of the loss function. To illustrate the idea, we

consider the value-based case with

ℓsh(f
t) =

(
Exh∼πfs ,ah∼πfs

Eh(f t, xh, ah)
)2

v.s.
(
Exh∼πfs ,ah∼πft

Eh(f t, xh, ah)
)2
.

However, the construction of the loss estimator L1:t
h (·) can be different, and in

particular, we need to perform some special sample collection techniques. At

iteration s < t, we collect trajectories with some exploration policy πexp(f
s, h),

and we need to use these trajectories to estimate ℓsh(f) in the future (e.g. t-th

iteration with t > s). The problem is that, the action ash sampled at iteration s

may not be identical to the greedy action of f t taken in the future. To address

this “mismatch”, we need to adopt some special exploration strategy so that the

distribution of (xsh, a
s
h) can be used to estimate ℓsh(f

t), even though f t is not

known at iteration s. When the action space is finite, we can adopt one step of

uniform exploration in the action space: xsh ∼ πfs , ash ∼ Unif(A). In this case,

we modify the loss estimation in Lemma 3.1.2 by

Ls
h(f) =

[ 1
m

m∑
i=1

1(ai,h = πf (xi,h))

1/A

(
Qh,f (x

s
i,h, a

s
i,h)− rsi,h − Vh+1,f (x

s
i,h+1)

)]2
,

(4.3.1)

where the loss estimator satisfies the condition in Definition 3.1.1 with ∆k
h =

4(k−1)H2A2ιh
m

. The proof is almost identical to that of Lemma 3.1.2 except for a

different range so we omit it. On the other hand, for the model-based approach,

45



one can use the same error estimator for the V-type problems but rescaled by a

factor of A, mainly due to the fact that the expectation is at the outside of the

square:

ℓsh(f) = Exh∼πfs ,ah∼πf
D2

H

(
Ph,f (· | xh, ah),Ph,f∗(· | xh, ah)

)
≤ Exh∼πfs

∑
ah∈A

D2
H

(
Ph,f (· | xh, ah),Ph,f∗(· | xh, ah)

)
= A · Exh∼πfs

Eah∼Unif(A)D
2
H

(
Ph,f (· | xh, ah),Ph,f∗(· | xh, ah)

)
.

We note that when the expectation is at the outside of the square, the target

is non-negative, which is the key to change-of-measure arguments. Then, we

modify the loss estimator in Lemma 3.1.6 as follows:

L1:t
h (f) =

A

2

t∑
s=1

− logPh,f (x
s
h+1 | xsh, ash),

which satisfies Definition 3.1.1 with ∆t
h = A log(H|Hh|/δ). We also include the

proof in Section 5.3. A similar observation holds for the Bellman complete case,

which also results from the non-negative of Eh(f, xh, ah)2. We refer readers to

[61] for a more detailed discussion.

When the action space is infinite, additional structural assumptions (referred

to as the linearly embeddable Bellman error) and a more advanced exploration

strategy are required to handle the V-type problems. These techniques are pre-

sented in [54].

4.3.2 Multi-agent Variant

We can extend the GEC to the multi-agent case. We illustrate the idea in the

case of a two-player zero-sum Markov game, as done by [66]. We focus on the

equilibrium computation case, where there exists a central controller that decides

the behaviors of all players. For simplicity, we consider the value-based setting.

Markov Games (MGs) generalize the MDPs to the multi-agent setting. We
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consider the episodic two-player zero-sum MG in this subsection, denoted as

MG(H,S,A,B,P, r), which additionally incorporates the action space of the

second player (B). The two players are referred to as the max-player and the

min-player, respectively, and now the transition kernel Ph(·|x, a, b) and the re-

ward function (for the max-player) rh(x, a, b) ∈ [0, 1] are jointly determined by

these two players. For the max-player, a Markov policy is a map from S to a

distribution over A and we define it similarly for the min-player but with action

space B. We can similarly define the value functions for a policy pair (µ, ν) as

V µ,ν
h (x) = Eµ,ν

[ H∑
h′=h

rh′ (xh′ , ah′ , bh′) | xh = x
]

Qµ,ν
h (x, a, b) = Eµ,ν

[ H∑
h=h

rh′ (xh′ , ah′ , bh′) | (xh, ah, bh) = (x, a, b)
]
.

Best Response. For any policy of max-player µ, a corresponding best re-

sponse for the min-player can be found, denoted as ν†(µ), such that V
µ,ν†(µ)
h (x) =

infν V
µ,ν
h (x) for all (x, h). Similarly, for a min-player policy ν, there exists a best

response for the max-player, denoted as µ†(ν), such that V µ†,ν
h (x) = supµ V

µ,ν
h (x)

for all (x, h). To simplify the notation, we use

V µ,†
h (x) := V

µ,ν†(µ)
h (x), Qµ,†

h (x, a, b) := Q
µ,ν†(µ)
h (x, a, b);

V †,ν
h (x) := V

µ†(ν),ν
h (x), Q†,ν

h (x, a, b) := Q
µ†(ν),ν
h (x, a, b).

Nash Equilibrium. Moreover, there exists a set of Nash equilibrium (NE)

policies (µ∗, ν∗) [67] that are optimal against their best response such that

V µ∗,†
h (x) = supµ V

µ,†
h (x), V †,ν∗

h (x) = infν V
†,ν
h (x),

for all (x, h) ∈ S × [H]. For this NE, the following famous minimax equation

holds:

supµ infν V
µ,ν
h (x) = V µ∗,ν∗

h (x) = infν supµ V
µ,ν
h (x)

for all (x, h) ∈ S × [H]. For simplicity, we denote V ∗
h (x) := V µ∗,ν∗

h (x) and
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Q∗
h(x) := Qµ∗,ν∗

h (x). Note that although there might exist multiple NE policies,

the NE value function is unique for a zero-sum MG.

Performance metrics with the exploiter. We analyze a special setting where

we adopt a non-symmetric structure in the max-player and min-player so that

the min-player (exploiter) serves as an exploiter to exploit the weakness of the

max-player (main agent). This innovative idea is from [68; 69] and is motivated

the practical self-play training. To this end, we aim to minimize the following

regret for the main agent:

RegMG(T ) :=
T∑
t=1

[
V ∗
1 (x1)− V µt,†

1 (x1)
]
,

where µt is the policy adopted by the max-player for episode t. Note that we

can switch the roles of two players to learn a policy ν for the min-player.

For simplicity, we only consider the value-based approach with the function class

F = F1 × · · · × FH where Fh ⊂ (S × A × B → R). Each f ∈ F induces a NE

and a max-player’s policy:

µh,f (x) = argmaxµ∈∆A
minν∈∆B µ

⊤fh(x, ·, ·)ν. (4.3.2)

The induced value function for all (x, h) is then given by

Vh,f (x) = maxµ∈∆A minν∈∆B µ
⊤fh(x, ·, ·)ν. (4.3.3)

Moreover, for a fixed max-player policy µf , we can approximate the value of the

best response via a function g by

V
µf

h,g (x) = minν∈∆B µh,f (x)
⊤gh(x, ·, ·)ν. (4.3.4)

The correspondingly approximate best response is given by

νf,g,h(x) = argminν∈∆B
µ⊤
h,fgh(x, ·, ·)ν. (4.3.5)
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We define two different Bellman operators as in [70; 68; 69]:

(Thf) (x, a, b) := rh(x, a, b) + Ex′∼Ph(·|x,a,b)Vh,f+1(x
′);

(T µ
h f) (x, a, b) := rh(x, a, b) + Ex′∼Ph(·|x,a,b)V

µ
h,f+1(x

′).

The corresponding Bellman residual are denoted as

Eh(f ;x, a, b) = Eh(fh, fh+1; ζ) = fh(x, a, b)− (Thf)(x, a, b);

Eµ
h (f ;x, a, b) = Eµ

h (fh, fh+1; ζ) = fh(x, a, b)− (T µ
h f)(x, a, b),

(4.3.6)

where we use the subscript and the trajectory ζ to denote the dependency on

the state-action pairs for notation simplicity. We can decompose the regret into

two parts:

RegMG(T ) =

(
T∑
t=1

V ∗
1 (x1)− V µt,νt

1 (x1)

)
︸ ︷︷ ︸

main agent

+

(
T∑
t=1

V µt,νt
1 (x1)− V µt,†

1 (x1)

)
︸ ︷︷ ︸

exploiter

.
(4.3.7)

Similar to the MDP case, we first decompose each part of regret into the Bellman

residuals, where the proofs are deferred to Section 5.1.

Lemma 4.3.1 (Value decomposition for the main agent). Let µ = µf (as in

(4.3.2)) and ν be an arbitrary policy taken by the min-player. It holds that

V ∗(x1)− V µ,ν
1 (x1) ≤

H∑
h=1

Eµ,νEh(fh, fh+1; ζ) + V ∗(x1)− V1,f (x1).

The innovative idea ([68; 69]) is that we may adopt a non-symmetric structure

in the max-player and min-player so that the min-player approximates the best

response for the max-player and serves as an exploiter to exploit its weakness.

Lemma 4.3.2 (Value decomposition for the exploiter). Suppose that µ = µf

is taken by the max-player and g is chosen by the min-player. Let ν be taken

according to (4.3.5). Then, it holds that

V µ,ν
1 (x1)− V µ,†

1 (x1) = −
H∑

h=1

Eµ,νEµ
h (gh, gh+1, ζ) + V µ

1,g(x1)− V µ,†
1 (x1).
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We can relate the prediction error to the training error via the following version

of eluder coefficient.

Definition 4.3.3 (Eluder coefficient for two-player zero-sum MGs). Given an

MG(H,S,A,B,P, r), a function class F , a time horizon T , the eluder coefficient

is the smallest d(ϵ) such that

H∑
h=1

T∑
t=1

[
Eπt

Eµft

h

(
gt;xh, ah, bh

)]
≤

√√√√d(ϵ)

H∑
h=1

T∑
t=1

t−1∑
s=1

[
Eπs

Eµft

h (gt;xh, ah, bh)
]2

+ 2min{Hd,H2T}+ ϵB†T,

for any sequence of {f t, gt ∈ F}Tt=1, where πs is a policy pair (µfs , νfs,gs) induced

by (fs, gs) via (4.3.2) and (4.3.5).

Then, it suffices to apply the optimistic modification and loss estimator for the

main agent and exploiter separately. We present the algorithm in Algorithm 2,

where the loss estimators L1:k−1
h (·) and L1:k−1

h,µ (·) can be constructed similarly to

Lemma 3.1.2 and Lemma 3.1.4. Then, the analyses basically follow Chapter 3 by

looking at the main agent and exploiter separately. We do not dive into details

here to avoid repetition.

Nevertheless, most of the techniques and ideas are similar for the two-player

zero-sum MGs and MDPs. It is interesting to see whether we can extend the

GEC to capture a more general multi-agent formulation.

4.3.3 Limitations

Computational efficiency. In this paper, we mainly care about the statistical

efficiency of the proposed algorithms, and the proposed algorithms are compu-

tationally inefficient in general. In contrast, [49] studies the general function

approximation under the LSVI-based framework (Least Squares Value Iteration)

with the eluder dimension, which is known to be computationally efficient as
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Algorithm 2 MEX for Two-player Zero-sum MG

1: Input: Hypothesis space H , η > 0, batch size m > 0.

2: for k = 1, 2, · · · , K := T/m do

3: For main agent, select fk by solving

fk = argmax
f∈H

[
V1,f (x1)− η

H∑
h=1

L1:k−1
h (f)

]
. (4.3.8)

4: For exploiter, select gk by solving

gk = argmax
g∈H

[
− V

µ
fk

1,g (x1)− η

H∑
h=1

L1:k−1
h,µ

fk
(g)
]
. (4.3.9)

5: Get the policies (µfk , νfk,gk) according to (4.3.2) and (4.3.5);

6: For each h ∈ [H], collect a batch of dataset {ζki,h}mi=1 by following

(µfk , νfk,gk) m times.

7: end for

long as we can efficiently solve

argmin
f∈F

n∑
i=1

(
f(xi, ai)− yi

)2
,

for any {xi, ai, yi}ni=1 ∈ Sn×An×Rn with respect to the function class F ⊂ {f :

S ×A → [0, H]} for function approximation. However, the problems covered by

the framework in [49] are rather limited and the regret bounds are also usually

inferior.

Suboptimal statistical efficiency. The regret bounds presented in this paper

are usually suboptimal in terms of the dependency on the episode length H

compared to the minimax lower bound. For instance, combining Example 2.2.5,

Lemma 3.1.4, and Theorem 3.2.1 1, our framework suggests that we can achieve

1Linear MDP is Bellman complete because the Bellman update of any V is linear in the

known feature according to Lemma 1.2.7. Meanwhile, we use the fact that the covering number

of the hypothesis space if Õ(d).
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a high-probability regret bound of Õ(H2d
√
T ). In comparison, [39; 40] give a

regret bound of Õ(H3/2d
√
T ). These works utilize the information of variance to

achieve the sharp horizon dependence and it would be interesting to see whether

we can achieve similar results in the framework presented in this paper.
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Chapter 5

Missing Proof

5.1 Proof of Regret Decomposition Lemmas

We prove the value decomposition lemmas in this section.

Proof of Lemma 2.1.1. The proof relies on the following lemma from [22].

Lemma 5.1.1 (Extended Value Difference Lemma). Let π = {πh}Hh=1 and π′ =

{π′
h}Hh=1 be two arbitrary policies and let {Q̂h}Hh=1 be any given Q-functions.

Then define V̂h(x) :=
〈
Q̂h(x, ·), πh(·|x)

〉
for all x ∈ S. Then, for all x ∈ S,

V̂1(x)− V π′

1 (x) =
H∑

h=1

Eπ′

[〈
Q̂h (xh, ·) , πh (· | xh)− π′

h (· | xh)
〉
| x1 = x

]
+

H∑
h=1

Eπ′

[
Q̂h (xh, ah)−

(
ThV̂h+1

)
(xh, ah) | x1 = x

]
.

Then, for each t ∈ [T ], we can decompose the immediate regret as follows:

V ∗
1 (x1)− V

πft

1 (x1) = V ∗
1 (x1)− V1,f t(x1)︸ ︷︷ ︸

(i)

+V1,f t(x1)− V
πft

1 (x1)︸ ︷︷ ︸
(ii)

. (5.1.1)
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In what follows, we omit the condition on the initial state x1 for notation sim-

plicity. We invoke Lemma 5.1.1 with π = πf t and π′ = π∗ to obtain that

(i) = −Eπ∗

H∑
h=1

Eh(f t, xh, ah) +
H∑

h=1

Eπ∗
[
⟨Qh,f t(xh, ·), π∗

h(·|xh)− πh,f t(·|xh)⟩
]

≤ −Eπ∗

H∑
h=1

Eh(f t, xh, ah),

(5.1.2)

where the inequality follows from πh,f t is greedy in terms of Qh,f t . We further

invoke Lemma 5.1.1 with π = πf t and π′ = πf t to obtain that

(ii) = Eπft

H∑
h=1

Eh(f t, xh, ah). (5.1.3)

Plugging (5.1.2) and (5.1.3) into (5.1.1), we obtain the desired result.

We now prove the decomposition lemma for the MGs.

Proof of Lemma 4.3.1. For a clean presentation, we use the notation Dπ so that

[DπQ] (x) := E(a,b)∼π(·,·|x)Q(x, a, b), for any policy pair π = (µ, ν) and action-value

function Q. With these notations, we have

V µ,ν
h (x) = [Dµh×νhQ

µ,ν
h ] (x).

Let µ = µf and ν be an arbitrary policy taken by the min-player.

V ∗
1 (x1)− V µ,ν

1 (x1)

=
H∑

h=1

Eµ,νVf,h(xh)− rh(xh, ah, bh)− Vh+1,f (xh+1) + V ∗
1 (x1)− V1,f (x1)

=
H∑

h=1

Eµ,ν min
ν′

Dµ,ν′f(xh)− rh(xh, ah, bh)− Vh+1,f (xh+1) + V ∗
1 (x1)− V1,f (x1)

≤
H∑

h=1

Eµ,νDµ,νf
h(xh)− rh(xh, ah, bh)− Vh+1,f (xh+1) + V ∗

1 (x1)− V1,f (x1)

=
H∑

h=1

Eµ,νf
h(xh, ah, bh)− rh(xh, ah, bh)− Vh+1,f (xh+1) + V ∗

1 (x1)− V1,f (x1)

=
H∑

h=1

Eµ,νEh(fh, fh+1, ζ) + V ∗
1 (x1)− V1,f (x1),
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where the first equality comes from the value-decomposition Theorem [34] (can

be verified easily by telescope sum and V H+1 = 0); the second equality is because

of the definition of µ = µh,f (x) = argmax
µ∈∆A

minν∈∆B µ
⊤fh(x, ·, ·)ν; the inequality

comes from the fact that µ = µf and ν may not be argminν′ Dµ,ν′f(xh).

Proof of Lemma 4.3.2. Suppose that µ = µf is taken by the max-player and g

is sampled from the posterior by the booster agent. Let ν be given by ν =

argminν′ V
µ
h (x) for all (x, h). Then, we have:

V µ,†
1 (x1)− V µ,ν

1 (x1)

= V µ
1,g(x1)− V µ,ν

1 (x1) + V µt,†
1 (x1)− V µ

1,g(x1)

=
H∑

h=1

Eµ,νDµ,νg(xh)− rh(xh, ah, bh)− V µ
h+1,g(xh+1) + V µ,†

1 (x1)− V µ
1,g(x1)

=
H∑

h=1

Eµ,νg
h(xh, ah, bh)− rh(xh, ah, bh)− V µ

h+1,g(xh+1) + V µ,†
1 (x1)− V µ

1,g(x1)

=
H∑

h=1

Eµ,νEµ
h (g

h, gh+1, ζ) + V µ,†
1 (x1)− V µ

1,g(x1).

5.2 Proof of Reductions

In this section, we prove the reduction of the problems for the linear mixture

MDP (Example 2.3.3) and witness rank (Example 2.3.6).

5.2.1 Reduction of Linear Mixture MDP

We recall that

ℓsh(f) := Eπfs

[
θ⊤h,f

[
ψ(xh, ah) +

∑
x′∈S

ϕ(xh, ah, x
′)Vh+1,fs(x′)

]
− rh − Vh+1,fs(xh+1)

]
.
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Proof. Similar to the linear MDP case, we first observe that

Eπft
Eh(f t, xh, ah) = Eπft

Qh,f t(xh, ah)− ThVh+1,f t(xh, ah)

= Eπft

(
θ⊤h,f t − θ⊤h,f∗

)(
ψ(xh, ah) +

∑
x′∈S

ϕ(xh, ah, x
′)Vh+1,f t(x′)

)
=
〈
Xh(f

t), θ⊤h,f t − θ⊤h,f∗

〉
,

where Xh(f
t) = Eπft

(
ψ(xh, ah)+

∑
x′∈S ϕ(xh, ah, x

′)Vh+1,f t(x′)
)
. With the same

proof in Example 2.2.5, we can show that

T∑
t=1

V1,ft − V πt

1

≤ H ·
T∑

t=1

H∑
h=1

min

{
|
〈
Xh(f

t),
θh,ft − θh,f∗

H

〉
|, 1
}
1{∥Xh(f

t)∥Σ−1
t;h

≤ 1}+min{Hd̃,H2T},

(5.2.1)

where d̃ = 3Hd
log 2

log
(
1 + 1

λ log 2

)
. We now fix a (t, h) in the first summation and

proceed as follows:

min

{
|
〈
Xh(f

t),
θh,ft − θh,f∗

H

〉
|, 1
}
1{∥Xh(f

t)∥Σ−1
t;h

≤ 1}

≤ ||
θh,ft − θh,f∗

H
||Σt;h

·min{||Xh(f
t)||Σ−1

t;h
, 1}

=
1

H

[
λ||θh,ft − θh,f∗ ||2 +

t−1∑
s=1

| ⟨Xh(f
s), θh,ft − θh,f∗⟩ |2

]1/2
·min{||Xh(f

t)||Σ−1
t;h
, 1}

≤
√

λ

H2
||θh,ft − θh,f∗ ||2 ·min{||Xh(f

t)||Σ−1
t;h
, 1}+ 1

H

[ t−1∑
s=1

(
ℓsh(f

t)
)2]1/2 ·min{||Xh(f

t)||Σ−1
t;h
, 1},

(5.2.2)

where the equality uses Σt;h = λI+
∑t−1

s=1Xh(f
s)Xh(f

s)⊤, and the last inequality

is because

⟨Xh(f
s), θh,ft − θh,f∗⟩

= Eπfs

(
ψ(xh, ah) +

∑
x′∈S

ϕ(xh, ah, x
′)Vh+1,fs(x′)

)⊤
(θh,ft − θh,f∗)

= Eπfs

[
θ⊤h,ft

(
ψ(xh, ah) +

∑
x′∈S

ϕ(xh, ah, x
′)Vh+1,fs(x′)

)
− rh(xh, ah)− Exh+1∼Ph,f∗ (·|xh,ah)Vh+1,fs(xh+1)

]
= Eπfs

[
θ⊤h,ft

(
ψ(xh, ah) +

∑
x′∈S

ϕ(xh, ah, x
′)Vh+1,fs(x′)

)
− rh(xh, ah)− Vh+1,fs(xh+1)

]
= ℓsh(f

t).

We also note that by regularization condition that supf∈H,h∈[H] ||θh,f || ≤ B, we
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have

H ·
T∑

t=1

H∑
h=1

√
λ

H2
||θh,ft − θh,f∗ ||2 ·min{||Xh(f

t)||Σ−1
t;h
, 1}

≲
√
λB2 ·

T∑
t=1

H∑
h=1

min{||Xh(f
t)||Σ−1

t;h
, 1}

≤
√
TλB2

√√√√H

T∑
t=1

H∑
h=1

min{||Xh(f t)||2Σ−1
t;h

, 1}

≤
√
TλB2

√
min{Hd̃,H2T}.

(5.2.3)

where we denote d̃ = 3Hd
log 2

log
(
1+ 1

λ log 2

)
. Plugging (5.2.2) and (5.2.3) into (5.2.1),

we obtain that

T∑
t=1

Vft − V πt

≤
T∑

t=1

H∑
h=1

[ t−1∑
s=1

(
ℓsh(f

t)
)2]1/2 · 1{∥Xh(f

t)∥Σ−1
t;h

≤ 1}

+
√
TλB2

√
min{Hd̃,H2T}+min{Hd̃,H2T}

≤
[
d̃

T∑
t=1

H∑
h=1

t−1∑
s=1

(
EπfsEh(f t, xh, ah)

)2]1/2
+ 2min{Hd̃,H2T}+B2Tλ.

Therefore, we conclude that linear MDP has a low eluder coefficient ofO
(
Hd log

(
1+

1
λ

))
.

5.2.2 Reduction of Witness Rank

We recall the (2.3.2) and write it here for the reader’s convenience.

max
v∈Vh

Eπf
[Ex′∼Ph,g(·|xh,ah)v(xh, ah, x

′)− Ex′∼Ph,f∗ (·|xh,ah)v(xh, ah, x
′)] ≥ ⟨Wh(g), Xh(f)⟩

κwit · Eπf
[Ex′∼Ph,g(·|xh,ah)Vh+1,g(x

′)− Ex′∼Ph,f∗ (·|xh,ah)Vh+1,g(x
′)] ≤ ⟨Wh(g), Xh(f)⟩ .

Proof of Example 2.3.6. To begin with, we note that for any (h, x, a, g) ∈ [H]×

S ×A×H, we have

max
v∈V

[(Ex′∼Ph,g(·|xh,ah)v(xh, ah, x
′)− Ex′∼Ph,f∗ (·|xh,ah)v(xh, ah, x

′))2]

≤ TV
(
Ph,g(·|xh, ah),Ph,f∗(·|xh, ah)

)2 ≤ 2D2
H

(
Ph,g(·|xh, ah),Ph,f∗(·|xh, ah)

)
,

(5.2.4)
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where TV(·, ·) is the total variation distance and D2
H(·, ·) is the Hellinger di-

vergence. By the Bellman equation under the hypothesis model f , we have

Qh,f (xh, ah) = rh(xh, ah) + Ex′∼Ph,f (·|xh,ah)Vh+1,f (x
′) for any f ∈ H. Combining

this with the second condition of witness rank, we have

|Eπf
[Qh,f (xh, ah)−rh(xh, ah)−Ex′∼Ph,f∗ (·|xh,ah)Vh+1,f (x

′)]| ≤ 1

κwit

⟨Wh(f), Xh(f)⟩ .

(5.2.5)

Let Σt;h = λI+
∑t−1

s=1Xh(f
s)Xh(f

s)⊤. Then, by the value decomposition lemma

(Lemma A.1.1), we have

T∑
t=1

Vft − V πft =

T∑
t=1

H∑
h=1

Eπft

[
Eh
(
f t, xh, ah

)]
≤ H ·

T∑
t=1

H∑
h=1

min{ 1

Hκwit
|
〈
Wh(f

t), Xh(f
t)
〉
|, 1}

= H ·
T∑

t=1

H∑
h=1

min{ 1

Hκwit
|
〈
Wh(f

t), Xh(f
t)
〉
|, 1} ·

(
1{
∥∥Xh

(
f t
)∥∥

Σ−1
t;h

≤ 1}+ 1{
∥∥Xh

(
f t
)∥∥

Σ−1
t;h

> 1}
)
,

≤ H

T∑
t=1

H∑
h=1

1

Hκwit
||Wh(f

t)||Σt;h
·min{||Xh(f

t)||Σ−1
t;h
, 1}+min{d̃H,H2T},

(5.2.6)

where d̃ = 3Hd
log 2

log
(
1+ 1

λ log 2

)
. Here the last inequality is because of the Lemma A.1.3.

We now fix a (t, h) in the first summation and proceed as follows:

1

Hκwit
||Wh(f

t)||Σt;h
·min{||Xh(f

t)||Σ−1
t;h
, 1}

=
1

Hκwit

[
λ · ||Wh(f

t)||22 +
t−1∑
s=1

∣∣〈Wh(f
t), Xh(f

s)
〉∣∣2 ]1/2 ·min{||Xh(f

t)||Σ−1
t;h
, 1}

≤ 1

Hκwit

(√
λB2 +

[ t−1∑
s=1

∣∣〈Wh(f
t), Xh(f

s)
〉∣∣2 ]1/2) ·min{||Xh(f

t)||Σ−1
t;h
, 1}

≤ 1

Hκwit

(√
λB2 +

[ t−1∑
s=1

2Exh∼πf
D2

H

(
Ph,ft(·|xh, ah),Ph,f∗(·|xh, ah)

)]1/2)
·min{||Xh(f

t)||Σ−1
t;h
, 1},

(5.2.7)

where we use
√
a+ b ≤

√
a+

√
b in the second-last inequality and use ||Wh(f

t)|| ≤

B; the last inequality is because the first condition of witness rank and (5.2.4).

We also note that

H ·
T∑
t=1

H∑
h=1

1

Hκwit

√
λB2min{||Xh(f

t)||Σ−1
t;h
, 1} ≤

√
TλB2/κ2wit

√
min{Hd̃,H2T}.

(5.2.8)
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Plugging (5.2.7) and (5.2.8) into (5.2.5), we obtain that

T∑
t=1

Vft − V πt

≤ 1

κwit

T∑
t=1

H∑
h=1

[ t−1∑
s=1

2Eπf
D2

H

(
Ph,ft(·|xh, ah),Ph,f∗(·|xh, ah)

)]1/2
· 1{∥Xh(f

t)∥Σ−1
t;h

≤ 1}

+
√
TλB2/κ2wit

√
min{Hd̃,H2T}+min{Hd̃,H2T}

≤
[ 2d̃

κ2wit

T∑
t=1

H∑
h=1

t−1∑
s=1

Eπf
D2

H

(
Ph,ft(·|xh, ah),Ph,f∗(·|xh, ah)

)]1/2
+ 2min{Hd̃,H2T}+B2Tλ/κ2wit.

By rescaling λ = λ′κ2wit, we conclude that problems with a witness rank of d have

a low eluder coefficient of O
(
Hd log

(
1 + 1

λ′κ2
wit

)
/κ2wit

)
.

5.2.3 Reduction of Factored MDP

Proof of Example 2.3.8. To begin with, we introduce the following discriminator

class

Vh = {w1 + w2 + · · ·wd : wi ∈ Wi},

where Wi = {O|pai|×A×O → {−1,+1}}. Note that wi indeed takes x, a, x′ as

input, but it only looks at (x[pai], a, x
′[i]) to determine whether it will output 1

or −1. According to Lemma 23 of [27], we know that

max
v∈Vh

Exh∼πf ,ah∼Unif(A)[Ex′∼Ph,g(·|xh,ah)v(xh, ah, x
′)− Ex′∼Ph,f∗ (·|xh,ah)v(xh, ah, x

′)]

= E
[ d∑

i=1

||P(i)
h,g(·|xh[pai], ah)− P(i)

h,f∗(·|xh[pai], ah)||TV |xh ∼ πf , ah ∼ Unif(A)
]
.

We denote Pπf

h (xh) as the probability of xh by following πf . Then, we have

max
v∈Vh

Exh∼πf ,ah∼Unif(A)[Ex′∼Ph,g(·|xh,ah)v(xh, ah, x
′)− Ex′∼Ph,f∗ (·|xh,ah)v(xh, ah, x

′)]

=
1

A

d∑
i=1

∑
xh∈S

∑
ah∈A

Pπf

h (xh)||P(i)
h,g(·|xh[pai], ah)− P(i)

h,f∗(·|xh[pai], ah)||TV

=
1

A

d∑
i=1

∑
z∈O|pai|

∑
ah∈A

Pπf

h (xh[pai] = z)||P(i)
h,g(·|z, ah)− P(i)

h,f∗(·|z, ah)||TV

= ⟨Xh(f),Wh(g)⟩ ,
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where Xh(f)[i, a, z] =
1
A
Pπf

h (xh[pai] = z) and Wh(g)[i, a, z] = ||P(i)
h,g(·|z, ah) −

P(i)
h,f∗(·|z, ah)||TV . Therefore, we know that there exists Xh : H → RL and Wh :

H → RL with L = A
∑d

i=1 |O||pai|.

On the other hand, we have

Exh∼πf ,ah∼πg
[Ex′∼Ph,g(·|xh,ah)Vh+1,g(x

′)− Ex′∼Ph,f∗ (·|xh,ah)Vh+1,g(x
′)]

≤ HE
[∑
a∈A

πg(a|xh)||Ph,g(·|xh, a)− Ph,f∗(·|xh, a)||TV |xh ∼ πf

]
≤ AH · E

[∑
a∈A

πg(a|xh)||Ph,g(·|xh, a)− Ph,f∗(·|xh, a)||TV |xh ∼ πf , ah ∼ Unif(A)
]

≤ AH · E
[∑
a∈A

πg(a|xh)
d∑

i=1

||P(i)
h,g(·|xh[pai], ah)− P(i)

h,f∗(·|xh[pai], ah)||TV |xh ∼ πf , ah ∼ Unif(A)
]

= AH · ⟨Xh(f),Wh(g)⟩ .

With the same proof of Example 2.3.6, we can show that

T∑
t=1

Vft − V πt

≤
[ 2d̃

κ2wit

T∑
t=1

H∑
h=1

t−1∑
s=1

Exh∼πf ,ah∼Unif(A)D
2
H

(
Ph,ft(·|xh, ah),Ph,f∗(·|xh, ah)

)]1/2
+ 2min{Hd̃,H2T}+B2Tλ/κ2wit,

where κwit =
1

AH
, d̃ = Õ(LH), and B = supf ||Wh(f)||2 = O(

√
L). By rescaling

λ = λ′κ2wit, we conclude that the factored MDP has a low eluder coefficient of

Õ
(
H3A2L

)
with ℓsh(f) = Exh∼πfs ,ah∼Unif(A)D

2
H

(
Ph,f (·|xh, ah),Ph,f∗(·|xh, ah)

)
.

5.2.4 Reduction of Q∗-state abstration model

Proof of Example 2.3.4. It suffices to prove that with the feature maps and also

the hypothesis class specified in Example 2.3.4, the space of Bellman residual is

a linear one with dimension d = (|K| + 1)|A|. Then, the remaining proof is the

same as that of linear MDP (Example 2.2.5).

To start with, we note that with the definitions of the feature maps ϕ(·, ·) and
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ψ(·), we have

Q∗
h(x, a) = ϕ(x, a)⊤θh,f∗ , θh,f∗ [z, a] = Q∗

h(x, a) with ξ(x) = z,

V ∗
h+1(x) = ψ(x)⊤wh+1,f∗(x), wh+1,f∗ [z] = V ∗

h+1(x) with ξ(x) = z.

Therefore, we have f ∗ ∈ H. Moreover, for any f, g ∈ H, we can obtain that

Eπg
Eh(f, xh, ah)

= Eπg

[
ϕ(xh, ah)

⊤θh,f − rh(xh, ah)− Ex′∼Ph(·|xh,ah)ψ(x
′)⊤wh+1,f

]
= Eπg

[
ϕ(xh, ah)

⊤θh,f −Q∗
h(xh, ah) + Ex′∼Ph(·|xh,ah)V

∗
h+1(x

′)− Ex′∼Ph(·|xh,ah)ψ(x
′)⊤wh+1,f

]
= Eπg

[
ϕ(xh, ah)

⊤(θh,f − θh,f∗) + Ex′∼Ph(·|xh,ah)ψ(x
′)⊤(wh+1,f∗ − wh+1,f )

]
= ⟨Xh(g),Wh(f)⟩ ,

where the second step uses (1.2.1). Here Xh,Wh : H → Rd are defined as follows:

Xh(g) =

 Eπgϕ(xh, ah)

EπgEx′∼Ph(·|xh,ah)ψ(x
′)

 , Wh(f) =

 θh,f − θh,f∗

wh+1,f∗ − wh+1,f

 .

5.3 Proof of In-sample Error Estimation

5.3.1 Proof for Model-based Approach

In this section, we provide the proof of in-sample error estimation for the model-

based approach (Lemma 3.1.6) and also its V-type variant discussed in Chapter 4.

Proof of Lemma 3.1.6. We recall that we will consider the following discrepancy

function:

L̃s
h(f) = −1

2
logPh,f (x

s
h+1 | xsh, ash) +

1

2
logPh,f∗(xsh+1 | xsh, ash),

which is equivalent to use −1
2
logPh,f (x

s
h+1 | xsh, ash) in the executed algorithm.

The proof itself is a standard application of Cramer Chernoff’s method. To
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this end, we first estimate the moment-generating function. We denote Et :=

E[·|(f 1, ζ1, · · · , f t−1, ζt−1, f t)]. In what follows, π̃t is either πf t (Q-type) or

Unif(A) (V-type). It follows that

E
[
exp

(1
2

t∑
s=1

log
Ph,f (x

s
h+1 | xsh, ash)

Ph,f∗(xsh+1 | xsh, ash)

)]
= E

[
exp

(1
2

t−1∑
s=1

log
Ph,f (x

s
h+1 | xsh, ash)

Ph,f∗(xsh+1 | xsh, ash)

)]
Et

√
Ph,f (xsh+1 | xth, ath)
Ph,f∗(xsh+1 | xth, ath)

= E
[
exp

(1
2

t−1∑
s=1

log
Ph,f (x

s
h+1 | xsh, ash)

Ph,f∗(xsh+1 | xsh, ash)

)]
Exh∼πft ,ah∼π̃t

∫
x∈S

√
Ph,f (x | xh, ah) · Ph,f∗(x | xh, ah)

= E
[
exp

(1
2

t−1∑
s=1

log
Ph,f (x

s
h+1 | xsh, ash)

Ph,f∗(xsh+1 | xsh, ash)

)](
1− Exh∼πft ,ah∼π̃t

D2
H

(
Ph,f (· | xh, ah),Ph,f∗(· | xh, ah)

))
= · · ·

=

t∏
s=1

(
1− Exh∼πfs ,ah∼π̃s

D2
H

(
Ph,f (· | xh, ah),Ph,f∗(· | xh, ah)

))
where we use the equivalent definitions of Hellinger distance (1.2.7) in the second

last equality. We now invoke Lemma A.1.4 to obtain that for any fixed (h, f),

we have

1− δ

H|Hh|
≤ P

[
∀t > 0 :

1

2

t∑
s=1

log
Ph,f (x

s
h+1 | xsh, ash)

Ph,f∗(xsh+1 | xsh, ash)
≤ log(H|Hh|/δ)

+

t∑
s=1

log
(
1− Exh∼πfs ,ah∼π̃s

D2
H

(
Ph,f (· | xh, ah),Ph,f∗(· | xh, ah)

)]
≤ P

[
∀t > 0 :

1

2

t∑
s=1

log
Ph,f (x

s
h+1 | xsh, ash)

Ph,f∗(xsh+1 | xsh, ash)
≤ log(H|Hh|/δ)

−
t∑

s=1

Exh∼πfs ,ah∼π̃s
D2

H

(
Ph,f (· | xh, ah),Ph,f∗(· | xh, ah)

)]
where we use log(1−x) ≤ −x for x ≤ 1. With a union bound over cHh and then

[H], we conclude that with probability at least 1− δ, we have for all t ∈ [T ] and

h ∈ [H],

t∑
s=1

Exh∼πfs ,ah∼π̃sD
2
H

(
Ph,f (· | xh, ah),Ph,f∗(· | xh, ah)

)]
≤

t∑
s=1

L̃s
h(f)+log(H|Hh|/δ).

Therefore, for the Q-type problem, (3.1.1) is satisfied with ∆t
h = log(H|Hh|/δ)

and for the V-type problem, (3.1.1) is satisfied with ∆t
h = A · log(H|Hh|/δ).

(3.1.2) naturally holds because L̃s
h(f

∗) = 0.
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5.3.2 Proof for Bellman-complete Case

Inspired by [18; 28], we use the discrepancy function

Ls
h(f) =

(
Qh,f (x

s
h, a

s
h)−rsh−Vh+1,f (x

s
h+1)

)2− inf
f ′
h∈Hh

(
Qh,f ′(xsh, a

s
h)−rsh−Vh+1,f (x

s
h+1)

)2
.

Proof. We define the auxiliary discrepancy loss function

L̃s
h(f) =

(
Qh,f (x

s
h, a

s
h)−rsh−Vh+1,f (x

s
h+1)

)2−(ThVh+1,f (x
s
h, a

s
h)−rsh−Vh+1,f (x

s
h+1)

)2
.

By completeness, we know that ThVh+1,f ∈ Hh, which implies that

L̃s
h(f) ≤ Ls

h(f). (5.3.1)

Therefore, we can prove (3.1.1) for L̃s
h(f) and it works for Ls

h(f). The proof is a

standard application of concentration inequality, where we choose the Freedman’s

inequality as in [18] (Lemma A.1.5).

The first key observation here is that

Exs
h+1∼Ph(·|xs

h,a
s
h)
L̃s
h(f) =

(
Eh(f, xsh, ash)

)2
,

because the expectation of the second term is exactly the conditional variance.

Therefore, we know that

Exs
h,a

s
h∼πfs

L̃s
h(f) = Exs

h,a
s
h∼πfs

(
Eh(f, xsh, ash)

)2
. (5.3.2)

We proceed to control the second moment of L̃s
h(f):

Exs
h,a

s
h∼πfs [L̃

s
h(f)

2]

=Exs
h,a

s
h∼πfs

[
Eh(f, xsh, ash)2

(
Qh,f (x

s
h, a

s
h)− rsh − Vh+1,f (x

s
h+1) + ThVh+1,f (x

s
h, a

s
h)− rsh − Vh+1,f (x

s
h+1)

)2]
≤4H2Exs

h,a
s
h∼πfsEh(f, xsh, ash)2.

By Lemma A.1.5, for any fixed (t, h, f) ∈ [T ] × [H] × H, we know that with

probability at least 1− δ
H|Hh|T

, we have

∣∣∣ t∑
s=1

Exs
h,a

s
h∼πfs

(
Eh(f, xh, ah)

)2 − t∑
s=1

L̃s
h(f)

∣∣∣ ≤ O
(√√√√H2 · log(H|Hh|T/δ)

t∑
s=1

Exs
h,a

s
h∼πfs

(
Eh(f, xh, ah)

)2
+H2 · log(H|Hh|T/δ)

)
.

(5.3.3)
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With a union bound over [T ]×Hh and then [H], we know that with probability

at least 1− δ, for any (t, h, f) ∈ [T ]× [H]×H, we have

−
t∑

s=1

L̃s
h(f) ≤ −0.5

t∑
s=1

Exs
h,a

s
h∼πfs

(
Eh(f, xh, ah)

)2
+ c ·H2 log(H|Hh|T/δ),

where the inequality is due to Cauchy-Schwarz inequality and a careful adjust-

ment of the constant. By (5.3.1), we know that

t∑
s=1

Exs
h,a

s
h∼πfs

(
Eh(f, xh, ah)

)2
≲

t∑
s=1

Ls
h(f) +H2 log(H|Hh|T/δ).

This concludes the proof of the first condition. We proceed to prove the second

condition. We define the following auxiliary random variable:

W s
h(f) =

(
Qh,f (x

s
h, a

s
h)− rsh − V ∗

h+1(x
s
h+1)

)2 − (Q∗
h(x

s
h, a

s
h)− rsh − V ∗

h+1(x
s
h+1)

)2
.

Similarly, we first note that

Exs
h,a

s
h∼πfs

W s
h(f) = Exs

h,a
s
h∼πfs

(
Qh,f (x

s
h, a

s
h)− ThV

∗
h+1(x

s
h, a

s
h)
)2

= Exs
h,a

s
h∼πfs

(
Qh,f (x

s
h, a

s
h)−Q∗

h(x
s
h, a

s
h)
)2
,

(5.3.4)

where the second equality follows from Bellman optimality equation. We can

also obtain the following bound for the second moment:

Exs
h,a

s
h∼πfs

[W s
h(f)

2] ≤ 4H2Exs
h,a

s
h∼πfs

(
Qh,f (x

s
h, a

s
h)−Q∗

h(x
s
h, a

s
h)
)2
.

By Freedman’s inequality and a union bound, with probability at least 1− δ, for

any (t, h, f) ∈ [T ]× [H]×H, we have

−
t∑

s=1

W s
h(f) ≲ H2 log(H|Hh|T/δ),

where we use the fact that Exs
h,a

s
h∼πfs

(
Qh,f (x

s
h, a

s
h) − Q∗

h(x
s
h, a

s
h)
)2 ≥ 0. This

implies that for any (t, h, f) ∈ [T ]× [H]×H, we have

(
Q∗

h(x
s
h, a

s
h)−rsh−V ∗

h+1(x
s
h+1)

)2−(Qh,f (x
s
h, a

s
h)−rsh−V ∗

h+1(x
s
h+1)

)2
≲ H2 log(H|Hh|T/δ).

Since f is arbitrary, we conclude that

(
Q∗

h(x
s
h, a

s
h)−rsh−V ∗

h+1(x
s
h+1)

)2− inf
f ′
h∈Hh

(
Qh,f ′(xsh, a

s
h)−rsh−V ∗

h+1(x
s
h+1)

)2
≲ H2 log(H|Hh|T/δ).
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This proves (3.1.2) for Ls
h(·).
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Chapter 6

Conclusion

In this paper, we study the reinforcement learning with general function ap-

proximation. We identify a structural measure, generalized eluder coefficient

(GEC), which serves to reduce the prediction error to the historical in-sample

training error in an online manner. We show that GEC captures a rich class

of known solvable problems. In terms of the algorithmic design, we propose

an optimization-based framework, whose target is modified with the “feel-good”

term [32]. The proposed algorithm is neat and unified that can solve problems

with a low GEC. Finally, we discuss the extensions of GEC to multi-agent sce-

narios.

66



Appendix A

Appendix chapter

A.1 Technical Lemmas

Lemma A.1.1 (Value Decomposition Lemma [34; 27]). For any hypothesis f

and the induced greedy policy πf , it holds that

V1,f (x1)− V
πf

1 (x1) =

H∑
h=1

Eπf
[Eh (f, xh, ah)] . (A.1.1)

Lemma A.1.2 (Elliptical Potential Lemma [45; 71; 47]). Let {xi}i∈[T ] be a

sequence of vectors in Rd with ||xi||2 ≤ L < ∞ for all t ∈ [T ]. Let Λ0 be a

positive-definite matrix and Λt = Λ0 +
∑t−1

i=1 xix
⊤
i . It holds that

T∑
i=1

min{1, ∥xi∥2Λ−1
i
} ≤ 2 log

(det(ΛT+1)

det(Λ1)

)
≤ 2d log

(trace(Λ0) + TL2

d det(Λ0)1/d

)
Lemma A.1.3 (Elliptical Potential is small for most of the time [72]). Given

λ > 0 and {Xt}Tt=1 ⊂ Rd with ||Xt|| ≤ L for all t ∈ [T ], if we denote Σt =

λI+
∑t

s=1XsX
⊤
s , then ||Xt||Σ−1

t−1
≥ 1 happens for at most

3d

log 2
log
(
1 +

L2

λ log 2

)
.

Lemma A.1.4 (Martingale Exponential Inequalities). Consider a sequence of

random functions ξ1(Z1), · · · , ξt(Zt), · · · with respect to filtration {Ft}. We have
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for any δ ∈ (0, 1) and λ > 0:

P
[
∃n > 0 : −

n∑
i=1

ξi ≥
log(1/δ)

λ
+

1

λ

n∑
i=1

logE
Z

(y)
i

exp(−λξi)
]
≤ δ,

where Zt = (Z
(x)
t , Z

(y)
t ) and Zt = (Z1, · · · , Zt).

Proof. See e.g., Theorem 13.2 of [73] for a detailed proof.

Lemma A.1.5 (Freedman’s inequality). Let {Xt}t≤T be a real-valued martin-

gale difference sequence adapted to filtration {Ft}t≤T . If |Xt| ≤ R almost surely,

then for any η ∈ (0, 1/R) it holds that with probability at least 1− δ,

T∑
t=1

Xt ≤ O

(
η

T∑
t=1

E[X2
t |Ft−1] +

log(1/δ)

η

)
.

Proof. See [74] for detailed proof.
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