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Abstract

This paper studies the alignment process of generative models with Reinforcement Learning from Hu-
man Feedback (RLHF). We first identify the primary challenges of existing popular methods like offline
PPO and offline DPO as lacking in strategical exploration of the environment. Then, to understand the
mathematical principle of RLHF, we consider a standard mathematical formulation, the reverse-KL reg-
ularized contextual bandit for RLHF. Despite its widespread practical application, a rigorous theoretical
analysis of this formulation remains open. We investigate its behavior in three distinct settings—offline,
online, and hybrid—and propose efficient algorithms with finite-sample theoretical guarantees.

Moving towards practical applications, our framework, with a robust approximation of the information-
theoretical policy improvement oracle, naturally gives rise to several novel RLHF algorithms. This in-
cludes an iterative version of the Direct Preference Optimization (DPO) algorithm for online settings,
and a multi-step rejection sampling strategy for offline scenarios. Our empirical evaluations on real-world
alignment experiment of large language model demonstrate that these proposed methods significantly
surpass existing strong baselines, such as DPO and Rejection Sampling Optimization (RSO), showcasing
the connections between solid theoretical foundations and their potent practical implementations.
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1 Introduction

Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017; Ziegler et al., 2019) has
emerged as a powerful paradigm to align modern generative models like Large Language Models (LLMs)
and diffusion models with human values and preferences. This approach has shown significant effectiveness
in applications such as ChatGPT (OpenAI, 2023), Claude (Anthropic, 2023), Bard (Google, 2023), and
LLaMA2 (Touvron et al., 2023), by making the built AI system helpful, harmless, honest and controllable
(Ouyang et al., 2022; Bai et al., 2022).

Despite its effectiveness, RLHF’s implementation often involves ad-hoc practices and extensive algorithmic
tuning in the entire pipeline, including preference data collection (it is hard to select representative hu-
mans (Bai et al., 2022), larger language models (Wang et al., 2024) or program compiler (Wang et al.,
2023b)), preference/reward modeling (reward misspecification and misgeneralization (Hong et al., 2022; Gao
et al., 2023)), and model optimization (instability of training (Choshen et al., 2019) and distribution shift is-
sue (Michaud et al., 2020; Tien et al., 2022)). Meanwhile, the resulting models of RLHF typically suffer from
issues like performance degeneration if we impose strong optimization pressure toward an imperfect reward
function (Michaud et al., 2020; Tien et al., 2022; Gao et al., 2023), which contains bias and approximation
error from the data collection and preference modeling (Gao et al., 2023; Wang et al., 2023d). Casper et al.
(2023) also discussed many other challenges of RLHF. Thus, it is important to understand the mathematical
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principle of the RLHF process, as well as the connections among its different steps, which should be able to
motivate future algorithmic design in principle.

In current RLHF theory, the agent’s objective is to maximize an observed reward function, with the optimal
policy typically being deterministic and reward-greedy (Agarwal et al., 2019). However, in practical RLHF
applications, merely maximizing the reward function is often insufficient and probably results in overfitting,
as the generative model must simultaneously ensure both diversity and high fidelity in its outputs. A
deterministic maximizer of the reward tends to compromise on these aspects significantly. For example, the
maximizer of the “safety reward” tends to avoid providing answers all the time, which contradicts the LLM’s
training objective. The situation worsens due to bias and approximation errors in reward modeling, leading
to the critical problem of reward hacking, where the model often repeats superfluous, pleasing yet irrelevant
words to appease the reward model (Michaud et al., 2020; Tien et al., 2022; Casper et al., 2023). Thus, it is
important to model diversity and high fidelity in the theoretical framework beyond the reward. Notably, the
most widely used mathematical objective function for this goal can be regarded as a reverse-KL regularized
contextual bandit problem (Ziegler et al., 2019; Wu et al., 2021a; Ouyang et al., 2022; Rafailov et al., 2023;
Liu et al., 2023a). The KL regularized contextual bandit additionally imposes a constraint that the optimal
policy cannot move too far away from the original policy (i.e. the starting checkpoint of the LLM). A major
difference between this objective function from traditional contextual bandit (Langford and Zhang, 2007)
is that the optimal policy is stochastic, which is closer to the practical generative models. See an intuitive
illustration why such a target is appealing in Figure 1. Despite numerous proposed procedures for this
formulation, a rigorous theoretical analysis remains open. This paper provides a theoretical analysis of the
regularized contextual bandit problem in both offline and online settings, aiming to inform and motivate
practical algorithmic designs. We summarize the contributions and take-away messages of this work as
follows:

• We identify the challenges of existing RLHF methods in Section 2: they require a preference dataset
with uniform coverage over the entire prompt-response space to converge to the optimal policy, which
is extremely hard to satisfy in practice due to the exponentially large response space;

• To understand the mathematical principle of RLHF, we first formally formulate the RLHF process
as a reverse-KL regularized contextual bandit problem in RLHF theory in Section 2, which more
accurately reflects real-world alignment practices (Ouyang et al., 2022; Bai et al., 2022; Rafailov et al.,
2023) compared to existing theoretical frameworks. Meanwhile, we deliver a comprehensive theoretical
analysis in offline, online, and hybrid settings for the formulated framework, where the three settings
are complementary to each other and hold their own values in practical applications.

– For offline learning from a fixed dataset, we show that RLHF with pessimism (a conservative
reward estimation) is sample efficient in Section 3. Moreover, we derive the way of implementing
the pessimism with both the PPO and DPO;

– For the online/hybrid learning, we discuss how to strategically explore and continuously enhance
the policy by online interactions with the humans in Section 4. Specifically, by establishing the
theoretical guarantee of the proposed algorithms, we show that the RLHF can benefit from online
exploration.

• Moving towards practical applications, in Section 5, we demonstrate that the proposed frameworks can
be practically implemented when combined with existing planning algorithms like offline PPO, offline
DPO, and InfoNCA, that optimize against a fixed reward function. In other words, our framework can
be viewed as built on the top of existing methods, and serve as to boost their performance;

• In Section 6, we demonstrate that the proposed algorithms empirically outperform existing strong
baselines like DPO (Rafailov et al., 2023) and RSO (Liu et al., 2023a) in real-world LLM experiments.
In particular, with the Zephyr-SFT-7B as the initial model, the resulting aligned policy enjoys an
impressive win-rate 34.79% in the AlpacaEval2 benchmark that beats many larger LLMs.
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1.1 Related Work

There is a rich literature in RLHF and we refer the interested readers to the survey papers like Casper et al.
(2023) for a more comprehensive review. We focus on the papers that are most related to our work here.

RLHF has attracted considerable attention in the past few years, especially after its tremendous success
in ChatGPT (OpenAI, 2023). We refer interested readers to Wirth et al. (2017); Casper et al. (2023) for a
detailed survey but focus on the most related works here. The standard RLHF was popularized by Christiano
et al. (2017), which served to direct the attention of the RL community to the preference-based feedback. The
most popular and standard RLHF framework is outlined in the InstructGPT paper (Ouyang et al., 2022),
Claude (Bai et al., 2022) and the LLaMA2 report (Touvron et al., 2023) in detail, which typically consists
of three steps starting from the pretrained model: supervised finetuning, reward modeling, and reward
optimization. The effectiveness of this framework has been showcased by many recent generative models,
like ChatGPT (OpenAI, 2023), Bard (Google, 2023), Claude (Anthropic, 2023), and LLaMA2 (Touvron
et al., 2023). However, it is also noteworthy to indicate that the RLHF process often leads to degeneration
in the performance of generation, commonly referred to as the “alignment tax” in the literature (Askell
et al., 2021). This is usually because of the imperfection of the reward model and the model can make use
of these imperfections to chase for a high reward. This phenomenon is referred to as the reward hacking
(Michaud et al., 2020; Tien et al., 2022). It is also possible to apply RLHF to general generative models, like
the diffusion model (Hao et al., 2022; Wu et al., 2023; Lee et al., 2023; Dong et al., 2023). In this work, we
use the terminology and analysis of LLMs for better illustration, and defer the study of general generative
models to future work.

RLHF algorithms. Proximal Policy Optimization (PPO) (Schulman et al., 2017) is the most well-known
algorithm in LLM alignment literature. However, its instability, inefficiency, and sensitivity to hyperpa-
rameters (Choshen et al., 2019) and code-level optimizations (Engstrom et al., 2020) present significant
challenges in tuning for optimal performance and its tremendous success in Chat-GPT4 (OpenAI, 2023) has
not been widely reproduced so far. Additionally, it often necessitates incorporating an extra reward model,
a value network (known as a critic), and a reference model, potentially as large as the aligned LLM (Ouyang
et al., 2022; Touvron et al., 2023). This imposes a significant demand on GPU memory resources. Thus,
researchers have attempted to design alternative approaches for LLM alignment to resolve the aforemen-
tioned issues. Dong et al. (2023); Yuan et al. (2023); Touvron et al. (2023); Gulcehre et al. (2023) propose
reward ranked finetuning (RAFT) (also known as the iterative finetuning, rejection sampling finetuning) by
iteratively learning from the best-of-n policy (Nakano et al., 2021) to maximize the reward, which is a stable
baseline with minimal hyper-parameter configuration and was applied to the alignment of LLaMA2 project.
There is also a line of work focusing on deriving an algorithm from the KL-regularized formulation (Rafailov
et al., 2023; Zhu et al., 2023b; Wang et al., 2023a; Liu et al., 2023a; Li et al., 2023b). Among them, Direct
Preference Optimization (DPO) (Rafailov et al., 2023) has emerged as an attractive alternative approach
to PPO with notable stability and competitive performance. The innovative idea of DPO is to train the
LLMs directly as a reward model based on the offline preference dataset and bypassing the reward modeling.
Similar to DPO, there are also other works aiming to optimize the LLMs directly from the preference data,
including (Zhao et al., 2023; Azar et al., 2023), and has sparked considerable debate on whether reward
modeling, as well as RL, is necessary for alignment. However, while these algorithms are partly inspired by
mathematical principles and intuitions, a comprehensive theoretical analysis remains open.

Theoretical study of RLHF. The theoretical understanding of RLHF can be traced back to research on
dueling bandits (e.g., Yue et al., 2012; Saha, 2021; Bengs et al., 2021), a simplified setting within the RLHF
framework. Recently, many works have focused on the more challenging RLHF problem (also known as
the preference-based RL). Xu et al. (2020); Novoseller et al. (2020); Pacchiano et al. (2021) delve into the
study of tabular online RLHF, where the state space is finite and small. Moving beyond the tabular setting,
Chen et al. (2022) provides the first results for online RLHF with general function approximation, capturing
real-world problems with large state spaces. Wang et al. (2023c) presents a reduction-based framework,
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which transforms some sample-efficient algorithms for standard reward-based RL to efficient algorithms for
online RLHF. Further advancements in algorithm designs are introduced by Zhan et al. (2023b); Wu and Sun
(2023), encompassing the development of reward-free learning type algorithms and posterior sampling-based
algorithms tailored for online RLHF. Initiating exploration into offline RLHF, Zhu et al. (2023a) presents a
pessimistic algorithm that is provably efficient for offline RLHF. Additionally, Zhan et al. (2023a) and Li et al.
(2023c) extend these investigations into the broader scope of general function approximation settings within
offline RLHF. In comparison to these existing studies, our work introduces a new theoretical formulation and
goal for RLHF, as well as novel problem settings, such as hybrid RLHF. The new mathematical formulation
allows our framework to align more closely with recent advancements in LLMs, and we discuss the connections
between our theoretical findings and practical algorithmic designs in Section 5. We mention in passing that
Tiapkin et al. (2023) also considers the KL constraint in offline RL but mainly focuses on the scenario where
an expert policy is available for imitation learning, thus differing from ours.

Finally, concurrent to this work, Hoang Tran (2024) and Yuan et al. (2024) consider variants of iterative
DPO that may share similar insights with us in terms of algorithmic design. We comment on the similarities
and differences between our work and theirs as follows. Hoang Tran (2024) focus on the batch online setting,
which will be thoroughly developed in Section 4. One notable difference is that they set the reference
policy as the one from last iteration, while we always use the π0 as the reference policy. From a theoretical
perspective, their algorithmic design resembles the classic policy gradient algorithm (Cai et al., 2020; Zhong
and Zhang, 2023) that optimizes the non-regularized reward, while we optimize the KL-regularized one as
most of the Instruct-GPT (Ouyang et al., 2022) and Claude (Bai et al., 2022) did. Yuan et al. (2024) also
consider iterative DPO-type training. However, both our algorithm and Hoang Tran (2024) leverage the
reward signal from the external model or human, while Yuan et al. (2024) adopts a clever idea by using the
LLM itself as the reward model to provide preference signal, hence the name “self-rewarding”. We remark
that the primary goal of this project is to formally formulate the RLHF as a KL-regularized contextual
bandit problem and establish its mathematical foundation. The online iterative DPO is a natural corollary
of the established framework but the framework can also be implemented by combining it with other oracle
algorithms. See Section 5 for details. Finally, we expect that the techniques presented in this paper also
extend to analyze the general preference learning like Azar et al. (2023) beyond the reward-based learning.

2 Formulation and Existing Approaches

In this section, we present the mathematical framework for the RLHF process, inspired by the standard
LLM alignment workflow (Ouyang et al., 2022; Touvron et al., 2023).

2.1 Formulation of RLHF

Specifically, the LLM can take a prompt, denoted by x ∈ X , and produce a response, denoted by a =
[w1, w2, . . .], where wi is the i-th token generated by the model. Accordingly, we can take X as the state
space of the contextual bandit and the A as the action space. Following Ouyang et al. (2022); Zhu et al.
(2023a); Rafailov et al. (2023); Liu et al. (2023a), we assume that there exists a ground-truth reward function
r∗(x, a) : X ×A → [0, 1] and the preference satisfies the Bradley-Terry model (Bradley and Terry, 1952):

P(a1 ≻ a2|x, a1, a2) = exp(r∗(x, a1))

exp(r∗(x, a1)) + exp(r∗(x, a2))
= σ

(
r∗(x, a1)− r∗(x, a2)

)
, (1)

where a1 ≻ a2 means that a1 is preferred to a2, and σ(z) = 1/(1 + exp(−z)) is the sigmoid function. We
denote an LLM by a policy π that maps x to a distribution over A.
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Figure 1: A two-dimensional illustrating example of human preference in generative modeling. We consider
a scenario where the initial data distribution π0, referred to as “pretrained”, is represented by a multi-modal
Gaussian mixture, reflecting real-world data complexities. The “human preference” is expressed as a bias
towards the right, as we set r = [1, 0]⊤a. The KL penalty is critical in maintaining the desired behavior of
πr. By varying the values of η, we demonstrate the impact of KL regularization in (b)-(d). As η approaches
zero, πr increasingly focuses on maximizing rewards, often at the expense of the pretrained data’s structure,
leading to a Gibbs distribution that potentially diverges infinitely.

In a typical LLM training pipeline, the tuning process begins with a pretrained LLM, which is subsequently
fine-tuned using specialized and instructional data, yielding an initial LLM policy denoted as π0. We will
then align the LLM on RLHF data (prompt set), which we assume is taken from a distribution x ∼ d0. For
preference learning, the way to gather information from the environment is to compare two different actions
under the same state. Considering this, we assume that the agent can perform a pair of actions, aligning
with precedents in existing literature (Novoseller et al., 2020; Pacchiano et al., 2021). In applications, we
want the resulting LLM π to be close to π0, and our goal is to find a policy π from some policy class Π to
maximize

J(π) = Ex∼d0
Ea∼π(·|x)

[
r∗(x, a) + η log

π0(a|x)
π(a|x)

]
= Ex∼d0

[
Ea∼π(·|x)[r

∗(x, a)]− ηDKL(π(·|x)∥π0(·|x))
]
, (2)

where η > 0 is the KL penalty coefficient. This formulation is widely studied in practice (Ziegler et al., 2019;
Wu et al., 2021a; Ouyang et al., 2022; Rafailov et al., 2023; Liu et al., 2023a), and our paper aims to study
its theoretical property.

Usually, we have a function class F for approximating the ground truth r∗. Following Pacchiano et al.
(2021); Kong and Yang (2022); Zhu et al. (2023a), we make the following assumption for a clear presentation
because it suffices to illustrate our ideas and the algorithmic design in this paper can also apply to the general
case. The analysis also readily generalizes to general function class using standard complexity measures in
RL theory literature (Russo and Van Roy, 2013; Gentile et al., 2022), which essentially state that there are
some low-rank structures in reward model.

Assumption 1. Assume that the reward function is parameterized by rθ(x, a) = ⟨θ, ϕ(x, a)⟩ for feature
extractor ϕ : X ×A → Rd. We also assume that r∗(x, a) = ⟨θ∗, ϕ(x, a)⟩ for some θ∗ ∈ Rd. For regularization,
we assume that ∥ϕ(x, a)∥ ≤ 1 for all possible (x, a) ∈ X × A and ∥θ∥ ≤ B. We also denote γ = 1/(2 +
exp(−B) + exp(B)).

Notation. We use ∥z∥Σ to denote the induced norm
√
z⊤Σz for some positive-definite matrix. We also

define ϕ(x, π) := Ea∼π(·|x)ϕ(x, a) to simplify the presentation. We use Õ when we omit the logarithmic
factors. A notation table is provided in Table 4 to improve the readability of this paper.

2.2 The Insufficiency of Classic Frameworks

The classic RLHF framework adopted by Ziegler et al. (2019); Ouyang et al. (2022) can be divided into
two stages: 1) reward modeling, and 2) policy optimization against the learned reward. We summarize the
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details of this method in this subsection.

Maximum Likelihood Estimation for reward modeling. Given a preference dataset D consists of
numerous tuples, such as (x, a1, a2, y), where y is the preference signal. Specifically, y = 1 means a preference
for a1 ≻ a2, while y = 0 indicates a1 ≺ a2. Given a dataset D = {(x, a1, a2, y)}, we can write the log-
likelihood function of the BT models as follows:

ℓD(θ) =
∑

(x,a1,a2,y)∈D

[
y log

(
σ
(
rθ(x, a

1)− rθ(x, a
2)
))

+ (1− y) log
(
σ
(
rθ(x, a

2)− rθ(x, a
1)
))]

. (3)

We can compute the maximum likelihood estimator (MLE) rMLE based on D as θMLE = argmaxθ∈Θ(B) ℓD(θ)

with Θ(B) = {θ ∈ Rd : ∥θ∥ ≤ B}. In practice, the MLE is also conducted with the LLMs (Ouyang et al.,
2022; Bai et al., 2022; Touvron et al., 2023) on the preference dataset.

Policy Optimization and Oracle. With the learned reward in hand, to approximately optimize the target
given in Equation (2), we simply call the seminal DRL method PPO with the following regularized reward:

r̂(x, a) = rMLE(x, a)− η log
π(a|x)
π0(a|x)

.

To simplify the discussion, we first omit the computational challenges by defining the following information-
theoretical policy improvement oracle, and defer a discussion on its practical implementations in Section 5.

Definition 1 (Policy Improvement Oracle). For reward function r : X ×A → R and a reference policy π0,
for all x ∈ X , we can compute the Gibbs policy (Lemma 11):

πr(·|x) := argmax
π∈Π

Ea∼π(·|x)

[
r(x, a) + η log

π0(a|x)
π(a|x)

]
∝ π0(·|x) · exp

(1
η
r(x, ·)

)
.

Accordingly, we take the policy class as Π :=
{
π(·|x) ∝ π0(·|x) · exp

(
1
η ⟨θ, ϕ(x, ·)⟩

)
: θ ∈ Θ(B)

}
. However,

even in this ideal case without worrying about tuning the RL method to its best performance, this useful
framework suffers from the reward over-optimization issue (Gao et al., 2023).

Intuitively, the finite D cannot cover the whole prompt-response space, and the fine-tuned reward model
often performs poorly in the face of out-of-distribution data (Burns et al., 2023).

Accordingly, the learned rMLE only aligns well with the ground truth r∗ in certain distributions and we
further illustrate this phenomena in Figure 2.

In addition to the PPO algorithm, the direct preference learning methods have attracted significant attention
recently due to its stability and competitive performance (Zhao et al., 2023; Rafailov et al., 2023; Azar et al.,
2023; Ethayarajh et al., 2024). We use the DPO as a representative example and the intuition extends to
other algorithms. We show that the DPO can be viewed as imposing constraints on the resulting policy by
D. Informally, to converge to π∗, the DPO requires an infinite D to cover the whole prompt-response space.
We defer the discussion to Appendix E.

In recognition of the above issues, the primary goal of this work is to formally formulate the RLHF process,
establish the mathematical foundation, and advance the practical algorithmic designs with the developed
theoretical insights.

2.3 Preliminary

In this section, we present some useful technical tools and lemmas for subsequent analysis.

Value decomposition. We have the following lemma to decompose the value difference.
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Figure 2: An illustration of the reward over-optimization adapted from Gao et al. (2023). Here the proxy
reward is trained from the responses of π0. Therefore, in the early stage, the proxy reward aligns well
with the gold reward in terms of the in-distribution responses. As reward gets higher, the distribution shift
becomes larger, and since the training set is lacking in the coverage over these out-of-distribution responses,
the proxy reward does not align with the gold reward in this stage.

Lemma 1. Given a comparator policy π, we can decompose the suboptimality of π̂ as follows:

J(π)− J(π̂) = Ex∼d0

[
Eπ[r

∗(x, a)− r̂(x, a)] + Eπ̂[r̂(x, a)− r∗(x, a)] + Eπ[r̂(x, a)]− Eπ̂[r̂(x, a)]

+ ηDKL(π̂(·|x)∥π0(·|x))− ηDKL(π(·|x)∥π0(·|x))
]
,

where r̂ : X ×A → R is arbitrary.

Proof. The equality can be verified directly by the definition of J(·) in Equation (2) and basic algebra.

Policy improvement error. In standard RL setting, π̂ is typically taken as a greedy policy of r̂, leading
to

Eπ[r̂(x, a)]− Eπ̂[r̂(x, a)] ≤ 0.

In the KL-constrained case, since the policy cannot be greedy or deterministic, we need to additionally
handle the policy improvement error. The following lemma provides such an estimation when our policy is
obtained by calling the Oracle 1 with r̂.

Lemma 2 (Policy optimization error). Suppose that π, π̂ ∈ Π so that π0, π, π̂ have the same support. If π̂
is induced by calling Oracle 1 with r̂, it holds that

Ex∼d0

[
Eπ[r̂(x, a)]− Eπ̂[r̂(x, a)] + ηDKL(π̂∥π0)− ηDKL(π∥π0)

]
= −ηEx∼d0DKL(π∥π̂).

Here DKL(π∥π0) is short for DKL(π(·|x)∥π0(·|x)).

We will provide the proof of the lemma in Appendix F. The analysis techniques are most similar to the
policy gradient literature since they also consider the soft-max policies (Chen and Teboulle, 1993; Agarwal
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et al., 2021; Cai et al., 2020; Zanette et al., 2021b; Yuan et al., 2022; Xiao, 2022; Zhong and Zhang, 2023;
Uehara et al., 2024; Alfano et al., 2024). The main difference is that in their iterative choices of policy, for
choosing πt, the reference policy they use is the policy of the last round, i.e., πt−1, while we always use the
SFT-model π0 as our reference. We note that their algorithms essentially still use the non-KL-regularized
reward as the target because though we prevent the policy from moving too far away in each individual step,
the cumulative updates makes the reward estimations dominating in the final policy.

Covariance matrix. Given a preference dataset D, a fixed λ > 0, we denote ΣD as the covariance matrix
estimation:

λI +
∑

(x,a1,a2)∈D

(
ϕ(x, a1)− ϕ(x, a2)

)(
ϕ(x, a1)− ϕ(x, a2)

)⊤
.

Both the algorithmic design and analysis will be centered on the covariance matrix. For the readers that
are not familiar with the eluder-type techniques (or elliptical potential lemma in this case), we provide a
brief introduction to the high-level intuition as follows. Given a training set D, the in-sample error on the
observed data in D is given by

∥θ1 − θ2∥2ΣD
= λ∥θ1 − θ2∥2 +

∑
(x,a1,a2)∈D

((
rθ1(x, a

1)− rθ1(x, a
2)
)
−

(
rθ2(x, a

1)− rθ2(x, a
2)
))2

,

where we additionally add a regularization term λ∥θ1 − θ2∥2. Meanwhile, if we test the hypothesis (θ1 − θ2)
on a newly observed data, the out-of-sample error would be given by |

〈
θ1 − θ2, ϕ(x, a

1)− ϕ(x, a2)
〉
|. The

ideal case would be that we can infer the out-of-sample error via the in-sample error, so we look at the ratio
between them:

|
〈
θ1 − θ2, ϕ(x, a

1)− ϕ(x, a2)
〉
|

∥θ1 − θ2∥ΣD

≤
∥ϕ(x, a1)− ϕ(x, a2)∥Σ−1

D
· ∥θ1 − θ2∥ΣD

∥θ1 − θ2∥ΣD

= ∥ϕ(x, a1)− ϕ(x, a2)∥Σ−1
D
,

where we take a square root on the in-sample error to keep them being of the same order and use Cauchy-
Schwarz inequality (Lemma 7). Here, the ∥ϕ(x, a1)− ϕ(x, a2)∥Σ−1

D
is referred to as the elliptical potential in

the literature of linear function approximation (Abbasi-Yadkori et al., 2011). The elliptical potential can be
viewed as the uncertainty of ϕ(x, a1)− ϕ(x, a2), given the historical samples in D, and can be used to guide
our exploration. The complexity of the reward model space is characterized by the following fact:

Lemma 3 (Elliptical potential is usually small (Hu et al., 2022)). For a fixed λ > 0 and {zt}Tt=1 ⊂ Rd with

∥zt∥ ≤ 1, we define Zt = λI +
∑t−1

s=1 zsz
⊤
s . Then, for any constant c > 0, ∥zt∥Z−1

t
> c happens at most

3d
log(1+c2) log

(
1 + 1

λ log(1+c2)

)
.

The ratio between the out-of-sample error and the in-sample error in the linear case can be readily generalized
to the general function approximation using the variant of eluder dimension considered in Gentile et al.
(2022); Zhang (2023); Ye et al. (2023); Agarwal et al. (2023), which essentially states that there is some
low-rank structure in the reward model space so the generalization is limited (the elliptical potential cannot
be large for too many times). Moreover, if we can effectively estimate the in-sample error from the preference
data, by Lemma 3, we can infer the out-of-sample error safely most of the time. Such an in-sample error
estimation is provided in Lemma 8. Essentially, the eluder-type complexity measures and techniques reduce
the learning problem to an online supervised learning (in-sample error estimation and minimization) (Zhong
et al., 2022).
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3 Offline Learning with Pessimism

3.1 Setup

In this section, we consider the offline setting, where we aim to learn a good policy from a pre-collected
dataset without further interactions with the human. We suppose that we are given an offline preference
dataset: Doff = {(xi, a1i , a2i , yi)}

noff
i=1 . We denote Σoff := ΣDoff

for offline setting. To motivate the algorithmic
design, with a comparator policy π, we recall Lemma 1 and Lemma 2 to obtain that

J(π)− J(π̂) = Ex∼d0

[
Eπ[r

∗(x, a)− r̂(x, a)] + Eπ̂[r̂(x, a)− r∗(x, a)]− η · Ex∼d0

[
DKL(π

∗(·|x)∥π̂(·|x))
]
,

(4)
where π̂ is induced by calling the Oracle 1 with r̂. In other words, the sub-optimality depends on the quality
of the learned reward r̂, under the distributions induced by π and π̂, separately. As we have mentioned in
Figure 2, the finite Doff from the behavior policy can hardly cover the whole prompt-space. The standard
way to handle this issue is to leverage the principle of pessimism with a conservative reward (Jin et al.,
2021b; Rashidinejad et al., 2021; Xie et al., 2021a; Zanette et al., 2021b), which means that we adopt an
estimator that is a lower bound of the true value with high probability. A technical motivation for doing so
is that in Equation (4), the second term Eπ̂[r̂(x, a)− r∗(x, a)] is hard to control because both the estimation
target (r̂−r∗) and the distribution induced by π̂ depend on Doff . Therefore, they are statistically dependent
and characterizing this term is challenging.

In this section, we connect the newly formulated KL-regularized bandit problem with the pessimism and
show that the modified variants are sample efficient.

3.2 Algorithms

We introduce two different ways to achieve pessimism. The first one is to directly penalize the reward
estimation by an uncertainty estimator r̂(x, a) = rMLE(x, a)−β ·Γ(x, a, ν,Doff) so that r̂(x, a)− r∗(x, a) ≤ 0
for all (x, a) ∈ X ×A. The construction of the uncertainty bonus is a standard application of concentration
inequality. Intuitively, the r̂ is an estimation of the ground truth r∗, and r̂ will converge to r∗ with infinitely
many samples that cover the whole feature space well. With finite samples, we can use the statistical tool
(concentration inequalities) to quantify the estimation error, in the sense that with high probability,

|r∗(x, a)− r̂(x, a)| ≤ Γ(x, a, ν,Doff),

where ν is a reference vector so that the uncertainty is relative to feature ν, which makes sense under the
preference learning nature. We omit the mathematical details here for a clear presentation and we defer the
details to Appendix C.

In addition to adopting a reward estimator with point-wise pessimism, we may also use a modified target
that is biased toward pessimism by penalizing the uncertainty as in Equation (5). Here we do not maintain
a confidence set but use a modified target that is biased toward pessimism, similar to Xie et al. (2021a);
Zhang (2022), which may be easier to approximate in practice (Liu et al., 2023b). Moreover, to handle the
additional trade-off between the reward and the KL term, we also incorporate the KL divergence into the
policy computation.

The full algorithmic framework is presented in Algorithm 1 and is referred to as the offline Gibbs Sampling
from Human Feedback (GSHF) because the output policy is the Gibbs distribution with some reward.
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Algorithm 1 Offline GSHF

1: Input: Doff , λ > 0, β > 0, reference vector ν, and prompt distribution d0.
2: Compute θMLE based on Doff by maximizing the likelihood given in Equation (3)
3: Option I: Output π̂ by constructing expected uncertainty estimator Γe(π, ν,Doff) and solving

π̂ = argmax
π∈Π

[
Ex∼d0,a∼π(·|x)[rMLE(x, a)]− β · Γe(π, ν,Doff)− η · Ex∼d0

[DKL(π(·|x)∥π0(·|x))]
]
. (5)

4: Option II: Output π̂ by constructing uncertainty estimator Γ(x, a, ν,Doff) and calling Oracle 1 with
r̂(x, a) = rMLE(x, a)− β · Γ(x, a, ν,Doff).

3.3 Main Results: Pessimism is Provably Efficient

We now present the main theoretical guarantee for Offline GSHF.

Theorem 1. Under Assumption 1, if we set β := O
(√d+log(1/δ)

γ2 + λB2
)
, for any λ > 0 and comparator

policy π ∈ Π, with probability at least 1−δ, the output policy of Algorithm 1 with Option I and Γe(π, ν,Doff) =
∥Ex∼d0

[ϕ(x, π)− ν]∥Σ−1
off

satisfies

J(π)− J(π̂) ≤ 2β · ∥Ex∼d0 [ϕ(x, π)]− ν∥Σ−1
off
,

and the output policy of Algorithm 1 with Option II and Γ(x, a, ν,Doff) = ∥ϕ(x, a)− ν∥Σ−1
off

satisfies

J(π)− J(π̂) ≤ 2β · Ex∼d0,a∼π(·|x)∥ϕ(x, a)− ν∥Σ−1
off

− η · Ex∼d0

[
DKL(π(·|x)∥π̂(·|x))

]
.

We can combine the guarantee with dataset property, usually referred to as the coverage on the comparator
policy π (Jin et al., 2021b; Xie et al., 2021a), to obtain the concrete bound. See Proposition 2 for an concrete
example. The proof of the theorem is rather standard in offline learning based on the principle of pessimism
but with a different analysis to handle the KL and the stochastic policy. We defer the proof of the theorem
to Appendix C. The reference vector ν in Algorithm 1 is typically set as Ex∼d0

[ϕ(x, πref)] for some available
πref . As showcased by Zhu et al. (2023a), the subtracted reference vector can serve as a pre-conditioner for
a better suboptimality bound. For instance, one typically choice is πref = π0 so that π0 achieves a reward of
zero (Ouyang et al., 2022; Gao et al., 2023; Dong et al., 2023).

Comparison of two implementations of pessimism. In comparison, the Option I achieves a sharper
bound in the uncertainty bonus because the expectation is inside the norm and by Jensen’s inequality
(Lemma 6) we know that

∥Ex∼d0
[ϕ(x, π)]− ν∥Σ−1

off
≤ Ex∼d0,a∼π(·|x)∥ϕ(x, a)− ν∥Σ−1

off
.

Moreover, Option I has a desirable robust improvement property. If we take ν = Ex∼d0 [ϕ(x, πref)], the
resulting policy will be better than πref , regardless of the coverage of the Doff according to Theorem 1,
which is similar to the original offline RL literature for a robust policy improvement (Bhardwaj et al.,
2023). We will also see that the use of a reference policy πref can also simplify the algorithmic design in
subsequent Section 4. However, the main advantage of Option II is that the Oracle 1 can be empirically well
approximated. For instance, we can directly plug the pessimistic reward into the PPO algorithm. Moreover,
we have the following algorithm in a direct preference learning manner that resembles that of Rafailov et al.
(2023); Zhao et al. (2023); Azar et al. (2023). We defer a detailed discussion to Section 5.
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4 Online Iterative Learning with Batch Exploration

4.1 Setup: Batch Hybrid Learning

Beyond the offline learning, it is also common to query human feedback during the training process. For in-
stance, Bai et al. (2022); Touvron et al. (2023) typically iterate the RLHF process on a weekly cadence, where
the fresh RLHF models are deployed to interact with crowdworkers and to collect new human preference
data.

We consider a slightly more general setting here, where we refer it to as the hybrid learning. This is because
while it is possible to learn from scratch, in many cases, we tend to start with the offline open-source datasets
(Touvron et al., 2023; Bai et al., 2023). For instance, in LLaMA2 (Touvron et al., 2023), the authors start
with 1500K open-source comparison pairs Doff and keep Doff in the data mixture for the entire RLHF
process. Motivated by the practical applications, we formulate the process as a batch hybrid framework in
this section. It is shown that such a batch online framework can significantly improve the aligned LLMs as
evaluated by the humans (Bai et al., 2022; Touvron et al., 2023). For completeness, we also develop the pure
online setting in Appendix B. Mathematically, consider the batch hybrid setting of T batches with a fixed
batch size m.

The agent initializes with the Doff (if applicable, otherwise initialize as empty). For each iteration t ∈ [T ],

• we first update the policy pair (π1
t , π

2
t ) based on the historical data collected so far: Doff and D1:t−1;

• we collect m tuples as Dt: we sample a random prompt by xt,i ∼ d0, collect two responses by
(a1t,i, a

2
t,i) ∼ (π1

t , π
2
t ), and query the preference signal yt,i from the underlying BT model;

• the next iteration begins.

The main technical challenge here is to decide the behavior policy pairs (π1
t , π

2
t ). It is well known that it is

important to strike a balance between exploration and exploitation to get RL works (Auer et al., 2002), and
we study such a trade-off in the context of online iterative RLHF.

4.2 Algorithms

Non-symmetric algorithmic structure. Our first idea is to adopt a non-symmetric structure in choosing
π1
t and π2

t . Specifically, we refer the π1
t as the main agent, which aims to learn a good policy so that the

suboptimality gap J(π∗)− J(π1
t ) is small. In contrast, the second agent, referred to as the enhancer, seeks

to enhance the learning of the main agent by choosing appropriate π2
t . The main advantage of such a

non-symmetric structure is that we have a lot of freedoms to choose π2
t because we do not worry about the

sub-optimality incurred by it (Jin et al., 2021a; Xiong et al., 2022b; Huang et al., 2021).

From a high level, the Online Iterative GSHF Algorithm continuously enhances the historical dataset by
strategically interacting with the human labeller. Specifically, in Algorithm 2, the main agent always ex-
ploits all the historical information by taking the optimal policy induced from the MLE rMLE. This process,
however, requires the newly collected data can provide more information, compared to those collected pre-
viously. We divide the problem into two different situations.

Option I. If the Doff is diverse enough and provides us with a good coverage in terms of the (π∗, πref), we
do not need to actively explore and can take π2

t = πref directly
2;

2We also mention in passing that for most of the cases, πref = π0. We use πref for a slightly more general formulation.
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Algorithm 2 Online Iterative GSHF

1: Input: m,Π,Doff (if applicable, otherwise Doff = ∅), β.
2: for t = 1, 2, · · · , T do
3: Observe xt,i ∼ d0 for i = 1, 2, · · · ,m 1.
4: Exploitation with the main agent: denote the MLE rMLE with the likelihood in Equation (3) and

compute the best guess we have so far:

π1
t = argmax

π∈Π
Ex∼d0Ea∼π(·|x)

[
rMLE(x, a)− ηDKL(π(·|x)∥π0(·|x))

]
. (6)

5: Exploration with the enhancer:
6: Option I: if Doff can provide good coverage, no need to explore so π2

t = πref ;

7: Option II: otherwise, choose π2
t by maximizing the relative uncertainty relative to π1

t :

argmax
π̃

Γm
t (λ, π1

t , π̃) := β ·
m∑
i=1

∥ϕ(xt,i, π̃)− ϕ(xt,i, π
1
t )∥Σ−1

t,m

subject to: π̃ ∈ Πt = {π′ ∈ Π : η · Ex∼d0
DKL(π

′(·|x), π1
t (·|x)) ≤ Γm

t (λ, π1
t , π

′)},

where Σt,m = λI +
1

m

t−1∑
i=1

m∑
j=1

(ϕ(xi,j , a
1
i,j)− ϕ(xi,j , a

2
i,j))(ϕ(xi,j , a

1
i,j)− ϕ(xi,j , a

2
i,j))

⊤.

(7)

8: Sample a1t,i ∼ πt and a
2
t,i ∼ π2

t , receive human feedback for all i ∈ [m], and collect them as Dt.
9: end for

10: Output: the best model in π1
1:T by a validation set.

Option II. If we cannot expect to have a diverse Doff , the enhancer aims to maximizes the uncertainty
relative to the main agent π1

t , while maintaining a moderate KL divergence3. In this case, the π2
t aims to

explore toward the direction that maximizes the uncertainty relative the main agent π1
t . We additionally

impose a constraint:

π̃ ∈ Πt = {π′ ∈ Π : η · Ex∼d0
DKL(π

′(·|x), π1
t (·|x))︸ ︷︷ ︸

How far does the enhancer go.

≤ Γm
t (λ, π1

t , π
′)︸ ︷︷ ︸

How much information we can get.

},

where this set is never empty because π1
t always belongs to it so the choice is well-defined. Intuitively, we

require that the information we can get is worth the cost we pay by moving away from π1
t .

Essentially, we are trying to boost our dataset by strategically choose the behavior policies at each iteration.
If we learn from scratch or the offline dataset is not good enough, we need to explicitly incorporate the
uncertainty into algorithmic design, and explore the direction where we are uncertain about so that we can
gain more information. On the other hand, if Doff is already good enough, our analysis shows that it is also
beneficial to collect more online data, as we now discuss in the next subsection.

4.3 Main Results: RLHF Benefits from Online Exploration

We first consider the case of Option I: π2
t = πref . In this case, it is essential to have a diverse Doff as we do

not explicitly explore. This is most related to the study of hybrid RL in the classic RL theory (Song et al.,
2022; Zhou et al., 2023). The major difference here is that for preference-based learning, the uncertainty

3We remark that we impose an additional KL regularization on π2
t is so that it also converges to π∗.
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is evaluated on the feature difference instead of a single state-action pair, as we summaize in the following
assumption.

Assumption 2 (Partial Coverage of Offline Data). For the linear model, there exists a reference policy πref ,
a ratio coefficient α(mT,Doff) ∈ (0, 1) and a coverage constant Ccov > 0 such that

(mT )1−α(mT,Doff )∥Ex∼d0 [ϕ(x, π
∗)− ϕ(x, πref)]∥(Σoff )−1 ≤ Ccov.

We remark that Assumption 2 implicitly assume that noff is comparable to the total number of online
samples mT so that the influence of Doff will not be dominated by the online data. To provide a more
detailed understanding and connection to existing literature, we offer a more nuanced characterization of
α(mT,Doff) under standard partial coverage conditions in Appendix D.1. In particular, when mT ≈ noff , we
show that α(mT,Doff) ≈ 1/2. It is worth emphasizing that this scenario appears to be realistic for LLMs.
For example, in the LLaMA2 project (Touvron et al., 2023), we observe noff = 1500K and mT = 1400K.
We are ready to present the results.

Theorem 2. For any ϵ > 0, under Assumption 1 with T = min{n ∈ N+ : n ≥ d log(n)} and β =

O
(√d log(T/δ)

γ2

)
, with probability at least 1 − 3δ, there exists a t0 ∈ [T ] such that Algorithm 2 with Option I

holds

J(π∗)− J(πt0) ≲

√
d

γ2m
+ β · ∥Ex∼d0 [ϕ(x, π

∗)− ϕ(x, πref)]∥Σ−1

off+D1:t0

− ηExt0
∼d0

[
DKL(π

1
t0(·|xt0)∥π

∗(·|xt0))
]
,

where Σoff+D1:t0 denotes the covariance matrix computed on Doff ∪D1:t0 . If we further assume that Assump-
tion 2 holds, we have

J(π∗)− J(πt0) ≲

√
d2

γ2m
+ β(mT )α(mT,Doff )−1Ccov − ηExt0∼d0

[
DKL(π

∗(·|xt0)∥πt0(·|xt0))
]
.

The proof is deferred to Appendix D.3. Note that the second result is a conservative bound where we
completely ignore the coverage provided by the online data D1:t0−1. We now qualitatively analyze the
impact of the online data as follows.

RLHF Benefits from Online Exploration. One natural question arises under Assumption 2: if we
can directly apply Algorithm 1 to get a good policy, why should we collect online data? The difference is
that now the second term corresponds to the coverage condition of Doff ∪ D1:t0 . Under Assumption 2, with
suitable hyper-parameters (large enough m and suitable β), we know that π1

t → π∗. Since the online data is
collected by (π1

t , πref) and the goal is to cover (π∗, πref), we expect that the intermediate policies can provide
a much better coverage as compared to the Doff , i.e., a much smaller Ccov, for many average instances. We
will partially verify this intuition in the experiment part.

We now move to the case of Option II where we cannot expect to have a diverse Doff and need explicit
exploration. We first show that with suitable β, the constructed confidence set contains π∗ with high
probability.

Lemma 4 (Confidence set). For the linear model in Assumption 1, given the policy of the main agent π1
t ,

we consider the following confidence set with β = O
(√d log(T/δ)

γ2m

)
:

Πt =
{
π̃ ∈ Π : η

m∑
i=1

DKL(π̃(·|xt,i)∥π1
t (·|xt,i)) ≤ β

m∑
i=1

∥ϕ(xt,i, π̃)− ϕ(xt,i, π
1
t )∥Σ−1

t,m

}
.

Then, with probability at least 1− δ, we know that π∗ ∈ Πt for all t ∈ [T ].
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We defer the proof to Appendix B.3 and present the main result for the Option II.

Theorem 3. For any ϵ > 0, we set the batch size m = d/(γ2ϵ2). Under Assumption 1, with β :=

O
(√d log(T/δ)

γ2m

)
and λ = Θ

(
d log(T/δ)/(mγ2B2)

)
, after T = min{n ∈ N+ : n ≥ d log(n)} iterations, we

have with probability at least 1− 3δ, Algorithm 2 with Option II satisfies: there exists a t0 ∈ [T ],

J(π∗)− J(π1
t0) ≲ ϵ− η · Ext0

∼d0

[
DKL(π

∗(·|xt0)∥π1
t0(·|xt0))

]
,

where the number of collected samples is at most mT = Õ
(

d2

γ2ϵ2

)
.

Getting Rid of Data Coverage. One notable feature of Theorem 3 is that with explicit exploration,
we do not need an offline dataset with good coverage, highlighting the importance of strategic explorations.
This is particularly important in the context of LLMs because the distribution shift between LLMs are very
large so data coverage is more sparse. For instance, along the way of finding the optimal policy of some
learned reward function by PPO, the KL divergence to the initial checkpoint can be > 25 (Bai et al., 2022).

Algorithmic Simplicity v.s. Data Coverage. We note that Option I and Option II are complementary
to each other and hold their own values. Specifically, the Option I offers simplicity in algorithmic design,
at the cost of demand for a high-quality Doff . In comparison, the online learning does not relies on the
quality of Doff , but the choice of the enhancer is challenging because for the neural network, the uncertainty
estimators do not admit a closed-form. In practice, we typically resort to heuristic methods (Wu et al.,
2021b; Coste et al., 2023) to estimate the uncertainty, as we discuss in the experiment part of this paper.

The advantage of reward modeling. Theorem 2 and Theorem 3 reveal a key characteristic of reward
modeling: the sample complexity is dependent on the complexity of the reward model rather than the
generative models. For simple reward functions, such as sentiment or politeness evaluation, the required
function class is substantially smaller compared to the generative model. This is corroborated by evidence
showing that even compact models like BERT (Devlin et al., 2018) can yield accurate reward assessments.
This may illustrate the advantage of the most popular RLHF framework used by Ouyang et al. (2022); Bai
et al. (2022); Touvron et al. (2023), in contrast to the idea of bypassing reward modeling (Rafailov et al.,
2023; Zhao et al., 2023; Azar et al., 2023) and training based only on the offline dataset.

5 Implementations of GSHF

In this section, we discuss how to practically implement the information-theoretical Algorithm 1 and Al-
gorithm 2. From a high level, the GSHF framework can be implemented by combining many existing
algorithms to approximate the computational Oracle 1. Notable examples include PPO, DPO, and InfoNCA
(Chen et al., 2024). Here, we focus on the PPO and DPO and discuss several popular ways to implement it.

In practice, the policy is represented by a deep neural network. In this case, one common choice (Ziegler
et al., 2019; Wu et al., 2021a; Ouyang et al., 2022; Bai et al., 2022) is to use the standard deep RL algorithms
like PPO to optimize the regularized reward:

r̃(x, a) = r(x, a)− η log
πθ(a|x)
π0(a|x)

.

However, PPO is significantly less stable and sensitive to implementation as compared to SFT (Choshen
et al., 2019; Engstrom et al., 2020). Recently, another line of work considers a family of algorithms that
directly learn from the preference data without reward modeling, including the DPO (Rafailov et al., 2023),
SLIC (Zhao et al., 2023), IPO (Azar et al., 2023). These algorithms attracted significant attention due to
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its stability and easy implementation. We use the DPO as a representative example here. Specifically, DPO
chooses to train the LLM as a reward model, by optimizing the following loss:∑

(x,aw,al)∈Doff

−
[
log σ

(
η log

πθ(a
w|x)

π0(aw|x)
− η log

πθ(a
l|x)

π0(al|x)

)]
, (8)

where aw, al is the chosen/rejected response. It is shown that the optimal policy for the DPO loss in
Equation (8) is identical to the one for the RLHF objective πr when r is the MLE (Azar et al., 2023). To fit
the DPO into the GSHF framework, we generalize this result to incorporate the pessimism.

5.1 Direct Preference Learning with Pessimism

For notation simplicity, we denote the uncertainty bonus as Γ(x, y) and omit the dependency on ν and Doff .
Then, we have the following proposition.

Proposition 1 (Direct Preference Learning with Pessimism). Given the preference dataset Doff , we can
implement Option II of Algorithm 1 by minimizing the following loss function:

LDoff
(θ, π0) =

∑
(x,aw,al)∈Doff

log σ

(
η log

πθ(a
w|x)

π0(aw|x)
− η log

πθ(a
l|x)

π0(al|x)
+ (Γ(x, aw)− Γ(x, al))︸ ︷︷ ︸

m(x,aw,al)

)
, (9)

where yw is preferred over yl.

Intuitively, we add an adaptive margin for each preference pair (x, aw, al) according to their uncertainty
difference. We defer the proof to Appendix C.2.

Uncertainty Estimation via Ensemble. The uncertainty estimation for the general neural network is
still an open problem. In practical applications, we typically resort to heuristic methods. For instance, Coste
et al. (2023) uses the idea of ensemble to get the pessimistic reward model. Specifically, they independently
train 5 reward models {ri}5i=1 and subtract the variance:

r̂(x, a) :=
1

5

5∑
i=1

ri(x, a)− λ
1

5

5∑
i=1

(
ri(x, a)−

1

5

5∑
j=1

rj(x, a)
)2
.

It is shown that such a pessimistic version of the reward model can significantly reduce the reward over-
optimization for PPO and best-of-n sampling (Nakano et al., 2021).

5.2 Enhancer Explores with Variants of Main Agent Policy

For the online exploration, selecting an appropriate optimistic policy for the enhancer to maximize the
uncertainty with respect to the main agent π1

t is largely less explored in practical applications. To be
specific, we recall that our goal is to find an enhancer policy from the following policy subset:

π̃ ∈ Πt = {π′ ∈ Π : η · Ex∼d0DKL(π(·|x), π1
t (·|x))︸ ︷︷ ︸

How far does the enhancer go.

≤ Γm
t (λ, π1

t , π
′)︸ ︷︷ ︸

How much information we can get.

}.

While it is challenging to obtain the analytical solution of uncertainty, the insight here is to maximize the
policy difference with π1

t , while maintaining a moderate KL divergence. We discuss some popular heuristic
implementations here.
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Model Variants. In the project of Claude (Bai et al., 2022), the authors choose to use the models with
different training steps as (π1

t , π
2
t ). For instance, if we run PPO for 2 epoch in total, we may take π1

t as the
model saved at the end of the first epoch and take π1

t as the one saved at the end of second epoch. Moreover,
in addition to the model variants, the LLaMA2 project (Touvron et al., 2023) further adjusts the sampling
temperature of π1

t to induce π2
t .

Rejection Sampling. A popular ensemble-based approach in the literature is the so-called rejection sam-
pling (Nakano et al., 2021; Dong et al., 2023; Liu et al., 2023a). We present a brief introduction to the
concept of rejection sampling in Appendix A.1. In the context of LLM, however, the rejection sampling
is usually restricted to the best-of-n sampling. Specifically, we sample n independent responses by π1

t for
each prompt, and then use a reward function to rank them and take the one with the highest reward as the
final output. In other words, we take π2

t as the best-of-n variant of π1
t . In this way, the π2

t enlarges the
margins between π1

t . Meanwhile, in this case, the KL divergence between the two policies is upper bounded
by log n − n−1

n and is usually far better than this conservative estimation (Beirami et al., 2024). We note
that similar idea has been adopted in Liu et al. (2023a); Hoang Tran (2024); Yuan et al. (2024) for improving
DPO.

5.3 Offline Learning with Pseudo-Labeling

We now consider a family of approaches that may slightly deviate from the main story of the paper but are
beneficial to clarify some confusing concepts in RLHF. In the formulation of RLHF, we define the offline
learning as learning without further querying the human feedback (the underlying ground-truth BT model),
while we define the online learning as the scenario where we can query the humans along the way of training.
In this sense, there are several existing algorithms in the literature are classified as offline one:

• PPO with a fixed reward (Christiano et al., 2017; Ziegler et al., 2019);

• RAFT (rejection sampling fine-tuning, or iterative SFT) (Dong et al., 2023): we generate n responses
for each prompt, and use a fixed reward to rank them, and fine-tune the model on those with high
rewards;

• RSO (DPO with rejection sampling) (Liu et al., 2023a): we generate n responses and use statistical
rejection sampling to approximately sample from π0(·|x) exp( 1η r(x, ·)) and use these samples to run
DPO.

All these algorithms do not query new human feedbacks during the training. Instead, they first train a proxy
reward r̂, and use r̂ to label the model-generated samples for the subsequent training. In particular, it is
known that

• PPO and RAFT outperform the SFT-baseline, which fine-tunes the models on the preferred samples
(Dong et al., 2023; Yuan et al., 2023);

• RSO outperforms DPO (Liu et al., 2023a).

In other words, while we are prohibited from collecting the ground-truth preference label, the offline RLHF
benefits from the pseudo labels from the learned reward, which resembles the insights of the semi-supervised
learning. One reasonable hypothesis is that the reward model may generalize better than the policy in terms
of sample complexity, i.e., reward model has better preference classification accuracy given a fixed number
of samples. Some empirical results (Li et al., 2023a) can also support the hypothesis.

multi-step RSO. Motivated by RSO (rejection sampling improves DPO) and RAFT (iterative learning is
more efficient), we propose a multi-step rejection-sampling-based offline DPO algorithm, referred to as the
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multi-step RSO. To motivate our method, we first review the main challenge of RSO. Liu et al. (2023a)
found that the usage of offline datasets typically impedes the effectiveness of DPO-based algorithms. This
negative impact is particularly pronounced when there is a disparity between the distribution of offline data
and the target distribution. Consequently, they trained a reward model, denoted as r, and approximated
samples from πr using rejection sampling. In this case, they generate samples from the optimal policy of
the underlying BT model associated with r and get Dgen = {(x, a1, a2, y)}. The authors suggested that this
is more suitable for DPO training and leads to better performance. The key basis of the success of RSO is
that the rejection sampling can well approximate πr.

However, in practice, the rejection rate can be so large that the sampling is not effective. Given a prompt-
response pair (x, a), the rejection rate is 1 − exp(−η−1(R(x) − r(x, a))), where R(x) is the largest pos-
sible reward over all a ∈ A. For example, given η > 0, if the samples drawn from π0(a|x) satisfies
Ea∼π0(a|x) exp(η

−1r(x, a)) = exp(−η−1(rx −R(x))), the expected acceptance rate becomes exp(− rx
η ), where

rx is the reward gap between average sample and the best sample given prompt x. Setting rx = 1 and
η = 0.1 yields a notably low acceptance rate of approximately 0.00004. Essentially, the majority of samples
are rejected, necessitating a substantial number of sampled candidates to produce a single accepted com-
parison pair. In the practical implementation of RSO (Liu et al., 2023a), we typically fix the total budget
of candidate responses and the number of samples to be accepted. In this case, due to the low sampling
efficiency, the collected samples may not well approximate the target distribution, and train on these samples
can lead to inferior performance compared to the original DPO.

To mitigate this issue and to make the algorithm more effective, we propose a multi-step approach to
progressively achieve our ultimate target. Instead of using π0 to approximate π0 exp(

1
η r) directly, we divide

the path into several steps by considering a sequence of distributions

π0 → π0 exp(
1

η1
r) → · · · → π0 exp(

1

ηN
r),

where η0 = ∞ (i.e., π0), ηN = η. The high-level intuition is that while approximating πr from π0 is
hard, approximating π0 exp(

1
ηi
r) with π0 exp(

1
ηi−1

r) is much easier. Therefore, we can do the rejection

sampling step by step. Considering the case Ea∼π0(a|x) exp(η
−1r(x, a)) = exp(−η−1(rx−R(x))), by choosing

N = [rx/η] + 1 steps, the acceptance rate at each step becomes an O(1) probability exp(− rx
η([rx/η]+1) ) >

exp(−1) > 0.367. The acceptance rate can be exponentially increased with the number of steps, i.e., N
steps correspond to an exp(N) increase in the acceptance rate. We also provide a numerical example in the
Appendix (Figure 7).

6 Experiments

In this section, we conduct real-world alignment experiments to verify the theoretical findings in the previous
sections. For a clear presentation, we refer the Algorithm 2 with Option I as Hybrid GSHF to stress that
we need a good offline dataset Doff to avoid explicit exploration and take π2

t = π0. Meanwhile, we refer
Algorithm 2 with Option II as Online GSHF to stress the need of online explorations. We describe the main
setup, competitors, and results in this section, and defer some omitted details to Appendix H for a clear
presentation.

6.1 Experiments Setup

Model, and Task. We use the Open-LLaMA-3B-V2 (Geng and Liu, 2023) as the pretrained model and
use the helpful subset of the Anthropic HH-RLHF dataset (Bai et al., 2022) (see Table 1 for a sample
example). We delete the noisy samples (e.g., with the same chosen and rejected responses), and prompts
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longer than 400 tokens, and eventually get 103K training set and 5K test set. We also sample a subset
of the UltraFeedback (Cui et al., 2023), consisting of 5K prompts, as another out-of-distribution test set.
Meanwhile, the UltraRM-13B (Cui et al., 2023) will be used as the ground truth reward model, also referred
to as the gold reward, which is trained on a mixture of UltraFeedback, Anthropic HH-RLHF, and other
open-source datasets based on LLaMA2-13B. For all the experiments, we fix the KL penalty in the learning
target Equation (2) as η = 0.1.

Offline Data Doff Generation and Initial Checkpoint. Following Gao et al. (2023); Coste et al. (2023),
we use the training prompts to generate responses by an Open-LLaMA-3B-V2 model that is fine-tuned on
the preferred responses of the original HH-RLHF dataset4. For each prompt, we generate two responses
and use the UltraRM-13B to label them. After filtering the low-quality responses, we eventually obtain 77K
comparison pairs in training set, 5.6K pairs as the validation set. We also set 20K samples as the “SFT”
split to get the RLHF starting checkpoint π0.

HH-RLHF Examples

Prompt:
Human: How can I get my girlfriend to cook more?
Assistant: Have you tried reminding her of how nice the food tastes?
Human: I could do it more.
Assistant:

Responses:
Chosen aw: That might work. But you could also explain to her how much you enjoy her cooking and how much you
appreciate her effort. Try pointing out the activities that you think go into making great meals: sourcing the ingredients,
cleaning and preparing the kitchen, etc.

Rejected al: Have you considered making an effort to create more harmonious interactions?

Table 1: An example of HH-RLHF dataset: A prompt-response pair with both chosen and rejected samples.

Setup of offline learning and hybrid learning. For offline learning, we learn from the offline dataset
Doff , and cannot further query human feedback in the training though it is possible to leverage the model
itself to generate more responses. For hybrid learning, we start with a subset of Doff , consisting of 25K
comparison pairs, and then fix the budget of online human feedback as 52K, leading to a total number of
queries consistent with the offline learning for a fair comparison. For all the hybrid algorithms, we will iterate
for three steps.

Method, Competitor and Evaluation. In our experiments, we compare the performance of the following
algorithms.

• SFT on the preferred samples;

• Offline DPO (Rafailov et al., 2023);

• RSO (Liu et al., 2023a);

• Hybrid-GSHF-DPO where we adopt the DPO as the computational oracle (this work);

• Multi-step RSO (this work).

The representative models of different RLHF methods will be measured by the gold reward of UltraRM-13B
and the KL divergence Ex∼d0DKL(π(·|x)∥π0(·|x)), which are both evaluated on the split test set.

4While it is possible to include other high-quality dialog datasets from Chat-GPT (like ShareGPT), we decide not to do
this in this round of experiment. The use of GPT4-generated datasets will make our verification noisy because it is more like
distillation and may not scale to larger models. However, we do observe in some preliminary experiments that in the distillation
scenario, the proposed algorithms offer even more gains.
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Models Settings Gold Reward Gold Win Rate GPT4 Eval OOD Gold Reward Difference ∆ ↓ OOD Gold Win Rate OOD GPT4 Eval

SFT Offline 0.27 - - -0.21 0.48 - -

DPO Offline 2.15 0.5 0.5 1.71 0.44 0.5 0.5

RSO Offline 2.25 0.54 0.53 1.89 0.36 0.55 0.52

Multi-step RSO Offline 2.59 0.63 0.57 2.41 0.18 0.64 0.60

Hybrid-GSHF-DPO Hybrid 2.67 0.67 0.65 2.46 0.21 0.66 0.59

Table 2: The evaluation results of the models from different RLHF algorithms. The gold rewards are
computed on the test split with 5K prompts and the GPT4 evaluations are with 100 randomly sampled test
prompts, with the DPO as baseline. We use 5K prompts from the UltraFeedback to compute the OOD
reward and ∆ is the difference between the in-domain test reward and the OOD one. We count GPT4
evaluation score as win× 1 + tie× 0.5 and provide the details in Table 3.

Model1 Model2 ID OOD
Win Lose Tie Win Lose Tie

RSO DPO 36 30 34 25 21 54
Multi-step RSO DPO 37 24 39 35 14 51

Hybrid-GSHF-DPO DPO 42 13 45 25 21 54

Table 3: GPT-4 evaluation results on both in-domain (HH-RLHF) and out-of-domain (UltraFeedback (Cui
et al., 2023)). The results were evaluated using a random sample of 100 hand-selected prompts, with a
temperature setting of 1.0. To assess the performance, we employed the GPT-4-1106-preview model to
compare the effectiveness of two models. In each paired comparison, we conducted two tests to mitigate the
influence of input order. GPT-4 responded with Win (W), Lose (L), or Tie (T) for each test.

Stronger DPO Model with Gold RM for Model Selection. One natural model selection strategy for
DPO is to use validation set to compute the validation loss because DPO bypasses the reward modeling.
Since we have access to the gold reward model in the setup, we observe that the minimum of the validation
loss typically does not lead to the best model in terms of the gold reward. Instead, the best model can
appear when we train the DPO for up to 2 ∼ 3 epochs. This is similar to the observation in Tunstall et al.
(2023), where the authors found that overfitting the preference dataset within certain limit does not hurt
the model performance (gold reward) and the strongest model was obtained with 3 epochs of DPO training.
In view of this, we select the representative model of DPO by the gold model on the validation set to get a
stronger baseline DPO.

6.2 Main Results: RLHF Benefits from Online and/or Pseudo Labelling Data

We use the reward-KL trade-off as the main metric to evaluate model, as all the considered RLHF algorithms
(except SFT) share the same KL-constraint reward optimization target in Equation (2). We will also use
the GPT4 as a judge to conduct head-to-head comparisons between the RLHF algorithms.

6.2.1 Online Exploration Improves Model Performance

We report the gold rewards and the GPT4 evaluations compared to the DPO baseline in Table 2 and the
reward-KL trade-off curves in Figure 3. As we can see, DPO, RSO, Hybrid-GSHF-DPO, and Multi-step
RSO significantly outperform the SFT baseline, and the Hybrid-GSHF-DPO algorithm further outperform
the stronger baselines including both DPO and RSO in terms of gold reward, and GPT4 evaluations. In
particular, the GSHF algorithm tend to be more robust in the face of OOD data, as they achieve a much
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smaller ∆ compared to other RLHF algorithms.
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Figure 3: The figure of Reward-KL trade-off and the rightest point is the highest gold reward that can
be achieved by the RLHF algorithm. Here the left figure is tested on a hand-out set of HH-RLHF (in-
distribution prompts), while the right figure is tested on a subset of UltraFeedback (Cui et al., 2023) with
5K out-of-distribution prompts.

To further illustrate the improvement from the online exploration, we compare different iterations of Hybrid-
GSHF-DPO in Figure 4. For each iteration, we evaluate the models every 400 training steps and plot the
representative models. Clearly, the previous iteration is strictly dominated by the subsequent one in terms of
the frontier. This demonstrates the significant improvements achieved by further iterating DPO with online
data. In particular, compared to offline DPO which uses more offline data than the iteration 1, leveraging
online data proves to be far more efficient, as evidenced by the enhanced frontier of the reward-KL trade-off.
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Figure 4: The Reward-KL trade-off curves of different iterations of Hybrid-GSHF-DPO. The rightest point
is the highest gold reward that can be achieved in that round.

6.2.2 RLHF Benefits from Pseudo Labelling and Iterative Learning

Consistent with the observations of the previous literature (Ouyang et al., 2022; Dong et al., 2023; Liu et al.,
2023a), if we first construct a proxy reward and use it as the preference oracle to provide pseudo label, the
resulting algorithm usually outperforms those learn directly from the offline data. In particular, according
to Table 2 and Figure 3, RSO outperforms the DPO even though the DPO is selected via the ground truth
UltraRM-13B. Moreover, we observe that the Multi-step RSO admits a strictly dominating reward-KL curve
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compared to the original RSO, demonstrating the effectiveness of iterative learning. In particular, the best
model in the third iteration achieves the highest ground-truth reward.

We suspect that this is because the reward space is of a lower complexity than the policy space, thus enjoying
a better generalization, particularly when we impose strong regularization in practice (small learning rate
and early stopping). In particular, while the reward model can make mistakes, the real human preference
data is also quite noisy because humans typically possess a set of intricate or even contradictory targets
thus the agreement rate between humans is typically only around 70% (Bansal et al., 2023). Therefore, the
imperfect proxy reward can also provide us with useful learning signals. However, as shown in Gao et al.
(2023), the major difference between the proxy reward model and the ground-truth reward model (human, or
a very large model trained a diverse set of preference data) is that the latter one is stable across a wide range
of KL divergence and is more reliable under large distribution shift. Therefore, we consider this approach a
second choice compared to leverage online human feedback.

6.2.3 Robustness to Sampling Temperature and Length Bias

Performance Comparison Under Different Sampling Temperatures. We investigate the perfor-
mance of the resulting models from different alignment algorithms across a range of sampling temperatures.
We report the test gold reward with respect to the sampling temperature in Figure 5. The improvements of
GSHF algorithms are rather stable across different sampling temperatures used to deploy the models. For
all the models, a temperature of 0.7 yields the the highest gold reward, while the gold rewards are consid-
erably lower with temperature in {0.2, 0.5, 1.0}. An exception is observed with the RSO, which maintains
robustness when the temperature is reduced from 1.0 to 0.7. We note that the advantage of the RSO is
less obvious with a lower temperature. Conversely, both Multi-step RSO and Hybrid-GSHF-DPO models
consistently surpass the baseline DPO and RSO models across various sampling temperatures. Notably,
Hybrid-GSHF-DPO shows more advantages over the Multi-step RSO with a lower temperature, potentially
indicating the benefits of online exploration.
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Figure 5: The gold reward with respect to the sampling temperature. The gold reward is tested on the
hand-out test set.

Length Bias. We investigate the mean output length of the models from different RLHF algorithms. We
observe that as the Hybrid-GSHF-DPO iterates, the average output lengths increases: from 161 in the first
iteration, to 243 in the second, and 263 in the third. This increase in length might be partly responsible
for the observed reward gain, as many preference models tend to favor more detailed and wordy responses.
In comparison, the average output lengths for DPO, RSO, and Multi-step RSO are 241, 275, and 240,
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respectively. Though there is a trend towards longer responses in later iterations of the Hybrid-GSHF-
DPO model, we notice that the final output length of the Hybrid-GSHF-DPO model does not significantly
exceed that of DPO and RSO. In practice, however, the reward (signal) hacking is the fundamental issue of
RLHF (Casper et al., 2023). Therefore, it may be beneficial to integrate additional strategies such as early
stopping, replay, and a thorough validation process to ensure the selection of the most effective model during
the training process.

6.3 Scaling-up Experiments

Setup. For the purpose of simulation study, we use the Open-LLaMA-3B-V2 and do not use the high-quality
SFT data for a clear and controllable verification process. In this subsection, we scale up the experiment
with the Zephyr-SFT-beta Tunstall et al. (2023), which is fine-tuned on 200K high quality Chat-GPT data
of UltraChat, starting from the strong pre-trained model Mistral-7B-v0.15. We use the prompt set of
UltraFeedback (Cui et al., 2023) and still use the UltraRM-13B to provide preference signal. We adopt
the DPO as the computational oracle and the rejection sampling as the exploration strategy as described
in Section 5.2 and set n = 8 through out the experiments. We iterate the Online-GSHF-DPO for three
iterations, and for each iteration, we mix all the historical data and run the DPO training for two epochs.

Competitors. The Zephyr project provides us with a baseline model trained by offline DPO on the Ultra-
Feedback dataset. We also include the RAFT (also known as rejection sampling fine-tuning) (Dong et al.,
2023) as a baseline, which iteratively learns from the best-of-n policy. For the SFT baseline, we decide to take
the Zephyr-SFT-beta and do not further fine-tune on the preferred responses of the UltraFeedback because
the UltraChat is generated by Chat-GPT, while UltraFeedback is generated by a mixture of Chat-GPT and
other open-source models like LLaMA2-7B-Chat.

Evaluation. We use the length-control win rate of the AlpacaEval-2 benchmark to evaluate the models6,
which is one of the most widely adopted benchmark to evaluate a general chatbot. The benchmark include
805 prompts and conduct head-to-head comparison for the model and GPT-4 Preview (11/06), where the
GPT-4 Preview (11/06) also serves as the judge. The length-control version aims to mitigate the length bias
of the GPT-4 (the model may prefer the longer responses) and has a correlation with human annotators of
0.98.

We report the main result in Figure 6. We observe that the length-control win rate to the GPT-4 Preview
(11/06) increases as the Online-GSHF-DPO iterates and outperforms the baseline offline DPO and RAFT in
the second iteration and eventually surpass them with a large margin. We also note that the UltraRM-13B
may bias toward the longer responses so that the the model after three iterations achieves a win rate of
30.49%, while its length-control win rate is only 24.17%. We leave the study of mitigating the length bias in
online iterative RLHF for future study. The performance of Online-GSHF-DPO can be further boosted with
a stronger reward model and a heavily filtered seed prompt set and the additional prompts generated by
ChatGPT-4 with self-instruct type prompt augmentation (Wang et al., 2022), with the final model achieving
a length-control win rate of 34.79%7. The details are described in the model card page.

To summarize, the simulation study and the scaling-up experiments have demonstrated the significant poten-
tial of the iterative RLHF algorithm for LLMs to deliver appropriate and well-structured responses. Notably,
in this process, we do not leverage any external responses from the powerful closed-source LLMs. Here, the
external information is the relative preference signal.

5https://huggingface.co/mistralai/Mistral-7B-v0.1
6https://tatsu-lab.github.io/alpaca_eval/
7https://huggingface.co/sfairXC/FsfairX-Zephyr-Chat-v0.1
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Figure 6: The results of length-control AlpacaEval-2 Win-Rate v.s. GPT-4 Preview (11/06) for different
methods.

7 Conclusion

In this paper, we formulate the real-world RLHF process as a reverse-KL regularized contextual bandit
problem. Compared to existing theoretical RLHF frameworks, the proposed framework admits a stochas-
tic optimal policy, that more accurately reflects the dynamics of foundation generative models and aligns
closely with current alignment practices (Ouyang et al., 2022; Bai et al., 2022; Rafailov et al., 2023). We
design statistically efficient algorithms in offline, online, and hybrid settings, featuring the standard ideas
of pessimism and optimism in the new framework, while also handling the distinct challenges of preference
learning as well as the newly introduced KL constraint with distinct algorithmic designs.

The theoretical findings also sheds light on innovative pathways for practical algorithmic development, as
we move toward implementations of the information-theoretical algorithms in Section 5. The practical
implementations of the proposed algorithms outperform strong baselines like DPO and RSO in real-world
alignment of LLMs.
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A Notation Table, Backgrounds, and Organization of Appendix

To improve the readability of this paper, we provide a Table 4 for the notations used in this paper. We also
provide an introduction to the rejection sampling for completeness.

Notation Description
⟨z1, z2⟩ The inner product of two vectors z⊤1 z2.

∥z∥Σ The induced norm
√
z⊤Σz.

X ,A The state (prompt) space and the action (response) space.
ϕ(x, a), θ The feature map and parameter of the linear parameterization in Assumption 1.

d The dimension of the feature vector.
π,Π Policy and policy class.
ℓD The log-likelihood of the BT model on D defined in Equation (3).

y ∈ {0, 1} Preference signal.
J(π) The KL-regularized target defined in Equation (2).
η The coefficient of KL penalty, defined in Equation (2).
d0 Distribution of state (prompt).
B, γ Regularization constant: ∥θ∥ ≤ B, γ = 1/(2 + exp(−B) + exp(B)).
Θ(B) {θ ∈ Rd : ∥θ∥ ≤ B}.
Doff ,Dt The offline dataset and the dataset collected in online iteration t.
Σoff ,Σt The covariance matrix with Doff and Dt.
σ(·) σ(z) = 1/(1 + exp(−z)) is the sigmoid function.

Ccov(Doff , πref , α) The coverage of the offline dataset defined in Definition 2.
Rejection Sampling See Appendix A.1 for an introduction.
Best-of-n Policy See Appendix A.1 for an introduction.

Table 4: The table of notations used in this paper.

A.1 Rejection Sampling

We briefly introduce the rejection sampling in this subsection. We first remark that in the literature, many
papers use this terminology to refer best-of-n policy (Touvron et al., 2023), which can be different from
the notion of rejection sampling here. Specifically, the best-of-n policy takes a base policy π and a reward
function r as the input, and output a new policy π̃: for each x ∈ X , we sample n independent policies from
π and output the one with the highest reward measured by r. In what follows, we introduce the rejection
sampling.

Rejection sampling, a widely utilized method in Monte Carlo tasks, is designed to sample from a target
distribution using samples from a proposal distribution and a uniform sampler (Neumann, 1951). This
technique is applicable when the density ratio between the target distribution q and the proposal distribution
p is bounded, satisfying q(x)/p(x) ≤ M for all x ∈ X . In practical implementation, n samples are drawn

from the proposal distribution p. Each sample, denoted as x ∼ p, is accepted with a probability r = q(x)
Mp(x) .

This acceptance is determined by evaluating whether u < r, where u is a number drawn from a uniform
distribution U [0, 1]. The accepted samples x̃ are then representative of the target distribution q.

The primary challenge in rejection sampling is its low acceptance rate, particularly problematic for high-
dimensional data due to the curse of dimensionality, where the density ratio often scales with exp(d). This
issue persists even in low-dimensional scenarios, as a large density ratio M can drastically reduce acceptance
rates. The method is most efficient when p closely approximates q, leading to M ≈ 1.
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A.2 Organization of the Appendix

In the appendix, we need to formally prove Theorem 1, 2, and 3. To distinguish them, we refer the first
theorem as the offline setting, the second setting as the hybrid learning to stress the requirement of a diverse
offline Doff and finally, we refer Theorem 3 as the online learning where we may start from scratch. While we
mainly focus on the batch learning setting to match the practical applications, we also develop the results
of sequential setting with m = 1 in case that readers are interested in the technique for completeness. The
map of the appendix is as follows.

• We develop the pure online framework in Appendix B, where we do not make any assumption on Doff .
We also provide the proof of Theorem 3 in this section;

• We study the offline learning in Appendix C with the proof of Theorem 1;

• We study the hybrid learning in Appendix D and prove Theorem 2;

• We study the coverage condition for DPO to converge in Appendix E;

• We provide the proof of some technical Lemmas in Appendix F, as well as some existing technical
Lemma in Appendix G;

• We provide the additional experimental details, hyper-parameters, and illustrating examples in Ap-
pendix H.

B Proof of Online Learning

In this section, we develop the online framework of the KL-constraint contextual bandit, that is missing in
the main paper.

B.1 Batch Online Learning

We first consider the case of m > 1, which leads to a more sparse update of the model. Our goal is also to
design a sample-efficient algorithm, which finds a policy π̂ so that the suboptimality J(π∗)− J(π̂) < ϵ with
the number of samples polynomial in the accuracy number 1/ϵ, feature dimension d, and other problem-
dependent parameters. In practical applications, it is observed that the diversity of the outputs is critical,
and the response pairs (a1t , a

2
t ) are recommended to be collected by different model variants with different

temperature hyper-parameter (Touvron et al., 2023).

Proof of Theorem 3. Recall the definition of the covariance matrix:

Σt,m = λI +
1

m

t−1∑
i=1

m∑
j=1

(ϕ(xi,j , a
1
i,j)− ϕ(xi,j , a

2
i,j))(ϕ(xi,j , a

1
i,j)− ϕ(xi,j , a

2
i,j))

⊤.

Then, by invoking Lemma 8 for θt with ΣD = mΣt,m and λ′ = mλ, we have with probability at least 1− δ,
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for any t ∈ [T ],

∥θt − θ∗∥Σt,m
=

1√
m
∥θt − θ∗∥ΣD

≤ C√
m

√
d+ log(T/δ)

γ2
+mλB2

=C

√
d+ log(T/δ)

γ2m
+ λB2. (10)

Let

Σ̃t = λI +

t−1∑
i=1

Ex∼d0,a1∼π1
i ,a

2∼π2
i

[
(ϕ(xt, a

1)− ϕ(xt, a
2))(ϕ(xt, a

1)− ϕ(xt, a
2))⊤

]
.

Now, by elliptical potential lemma (Lemma 9), we have

T∑
t=1

log
(
1 + Ext∼d0

∥ϕ(xt, π1
t )− ϕ(xt, π

2
t )∥2Σ̃−1

t

)
≤

T∑
t=1

log
(
1 + Ext∼d0,a1∼π1

t ,a
2∼π2

t
∥[ϕ(xt, a1)− ϕ(xt, a

2)]∥2
Σ̃−1

t

)
≤ log

det(Σ̃T )

det(λI)

≤d log(1 + TL2/λd) := γT (λ).

Since each term on the left-hand side is positive, we know that there exists at least a t0 ∈ [T ], the value is
smaller or equal than the average value:

log
(
1 + ψ2

t0

)
≤ 1

T
γT (λ),

where we use the short-hand notation ψt = Ext∼d0∥ϕ(xt, π1
t )− ϕ(xt, π

2
t )∥Σ̃−1

t
. It is equivalent to

ψ2
t0 ≤ exp

(γT (λ)
T

)
− 1.

We now consider the suboptimality at iteration t0:

J(π∗)− J(π1
t0) = Ext0∼d0

[ 〈
θt0 − θ∗, ϕ(xt0 , π

1
t0)− ϕ(xt0 , π

∗)
〉 ]

− ηExt0∼d0

[
DKL(π

∗(·|xt0)∥π1
t0(·|xt0))

]
≤ Ext0∼d0

[
∥ϕ(xt0 , π1

t0)− ϕ(xt0 , π
∗)∥Σ−1

t,m

]
· ∥θt0 − θ∗∥Σt,m

− ηExt0∼d0

[
DKL(π

∗(·|xt0)∥π1
t0(·|xt0))

]
,

(11)

where the inequality uses the Cauchy-Schwarz inequality (Lemma 7). Then, since the samples {xt,i}mi=1 are
i.i.d and for any x ∈ X

∥ϕ(x, π1
t0)− ϕ(xt0 , π

∗)∥Σ−1
t,m

≤ 2√
λ
,

we can use Chernoff bound (Theorem 2.16 of Zhang (2023)) to obtain that with probability at least 1− δ/2,

Ext0
∼d0

[
∥ϕ(xt0 , π1

t0)− ϕ(xt0 , π
∗)∥Σ−1

t,m

]
≤ 1

m

m∑
i=1

∥ϕ(xt,i, π1
t0)− ϕ(xt,i, π

∗)∥Σ−1
t,m

+

√
log(2/δ)

2m
.

Similarly, we also get with probability at least 1− δ/2,

1

m

m∑
i=1

∥ϕ(xt,i, π1
t0)− ϕ(xt,i, π

∗)∥Σ̃−1
t0

≤ Ext0
∼d0

[
∥ϕ(xt0 , π1

t0)− ϕ(xt0 , π
∗)∥Σ̃−1

t0

]
+

√
log(2/δ)

2m
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We take the two inequalities above back into Equation (11) to derive with that probability at least 1− 3δ,

J(π∗)− J(π1
t0)

≤
( 1

m

m∑
i=1

[
∥ϕ(xt0,i, π1

t0)− ϕ(xt0,i, π
∗)∥Σ−1

t0,m

]
+

√
log(2/δ)

2m

)
· ∥θt0 − θ∗∥Σt0,m

− ηExt0
∼d0

[
DKL(π

∗(·|xt0)∥π1
t0(·|xt0))

]
≤

( 1

m

m∑
i=1

[
∥ϕ(xt0,i, π1

t0)− ϕ(xt0,i, π
2
t0)∥Σ−1

t0,m

]
+

√
log(2/δ)

2m

)
· ∥θt0 − θ∗∥Σt0,m

− ηExt0∼d0

[
DKL(π

∗(·|xt0)∥π1
t0(·|xt0))

]
≤

(√3

m

m∑
i=1

[
∥ϕ(xt0,i, π1

t0)− ϕ(xt0,i, π
2
t0)∥Σ̃−1

t0

]
+

√
log(2/δ)

2m

)
· ∥θt0 − θ∗∥Σt0,m − ηExt0

∼d0

[
DKL(π

∗(·|xt0)∥π1
t0(·|xt0))

]
≤

(√
3Ext0

∼d0

[
∥ϕ(xt0 , π1

t0)− ϕ(xt0 , π
∗)∥Σ̃−1

t0

]
+ 2

√
log(2/δ)

2m

)
· ∥θt0 − θ∗∥Σt0,m

− ηExt0
∼d0

[
DKL(π

∗(·|xt0)∥π1
t0(·|xt0))

]
≤ C ·

(√
exp

(γT (λ)
T

)− 1 + 2

√
log(2/δ)

2m

)√d+ log(T/δ)

γ2m
+ λB2 − ηExt0∼d0

[
DKL(π

∗(·|xt0)∥π1
t0(·|xt0))

]
,

(12)

where the second inequality applies Lemma 10 with λ = Ω(d log(T/δ)/m), and the last inequality uses
Equation (10). By choosing T satisfying that T ≥ d log(T ) and λ = Θ(d log(T/δ)/mγ2), we have

J(π∗)− J(π1
t0) = Õ

(√ d

γ2m
− ηExt0

∼d0

[
DKL(π

∗(·|xt0)∥π1
t0(·|xt0))

])
,

which concludes the proof.

B.2 Sequential Online Setting

While we mainly care about finding a good model, with a slightly more involved analysis for the enhancer,
we can also derive an upper bound for the average regret as in Pacchiano et al. (2021); Chen et al. (2022):

Regave(T ) :=

T∑
t=1

[2J(π∗)− J(π1
t )− J(π2

t )

2

]
,

where we now discuss in the sequential case with m = 1. We consider two kinds of regrets: (1) cumulative
suboptimality for the main policy π1

t compared to π∗:

Reg(T ) :=

T∑
t=1

[
J(π∗)− J(π1

t )
]
,

and (2) the average suboptimality:

Regave(T ) :=

T∑
t=1

[2J(π∗)− J(π1
t )− J(π2

t )

2

]
.

In this case, our goal is to output a sequence of policy pair {π1
t , π

2
t }Tt=1 so that the regrets Reg(T ) and

Regave(T ) are sublinear. To achieve this goal, the enhancer computes its policy by maximizing the uncertainty
estimator

π2
t = argmax

π2
t∈Πt

m∑
i=1

Γ(xt,i, π
1
t , π

2
t ,D1:t−1), (13)

where D1:t−1 = ∪t−1
s=1Ds.
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Theorem 4 (Sequential Online learning). Under Assumption 1, with λ = Ω(d log(T/δ)/(γ2B2)) and β :=

O
(√d log(T/δ)

γ2

)
, with probability at least 1− 2δ, the regret of Algorithm 2 with Option II and m = 1 satisfies

Regave(T ) ≲
√
Tβ2d− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]
,

which further implies that

Reg(T ) ≲
√
Tβ2d− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]
.

Proof of Theorem 4. First, we invoke the decomposition Lemma 1 and Lemma 2 to obtain for each batch
t ∈ [T ]

J(π∗)− J(π1
t )

= Ext∼d0

[
Eπ∗ [r∗(xt, a)− r̂(xt, a)] + Eπ1

t
[r̂(xt, a)− r∗(xt, a)]− η · Ext∼d0

[
DKL(π

∗(·|xt)∥π1
t (·|xt))

]
= Ext∼d0

[ 〈
θ̂ − θ∗, ϕ(xt, π

1
t )− ϕ(xt, π

∗)
〉 ]

− η · Ext∼d0

[
DKL(π

∗(·|xt)∥π1
t (·|xt))

]
. (14)

Then, we deduce that with probability at least 1− δ,

T∑
t=1

[
J(π∗)− J(π1

t )
]

=

T∑
t=1

Ext∼d0

[ 〈
θt − θ∗, ϕ(xt, π

1
t )− ϕ(xt, π

∗)
〉 ]

− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]
≤ β

T∑
t=1

Ext∼d0
min

{
1, ∥ϕ(xt, π1

t )− ϕ(xt, π
∗)∥Σ−1

t

}
− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]
≤ β

T∑
t=1

Ext∼d0
min

{
1, ∥ϕ(xt, π1

t )− ϕ(xt, π
2
t )∥Σ−1

t

}
− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]

≤ β

√√√√T

T∑
t=1

Ext∼d0,(a1
t ,a

2
t )∼(π1

t ,π
2
t )
min

{
1, ∥ϕ(xt, a1t )− ϕ(xt, a2t )∥2Σ−1

t

}
− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]
,

(15)

where the first inequality uses the Cauchy-Schwarz inequality, Lemma 8 and reward r ≤ 1 for any r ∈ F ,
the second inequality uses π∗ ∈ Πt according to Lemma 4, and the last inequality uses the Cauchy-Schwarz
inequality and Jensen’s inequality.

Then, we define

Σ̄t =

T∑
t=1

Ext∼d0,(a1
t ,a

2
t )∼(π1

t ,π
2
t )
[(ϕ(xt, a

1
t )− ϕ(xt, a

2
t ))(ϕ(xt, a

1
t )− ϕ(xt, a

2
t ))

⊤] + λI.

According to the concentration of the covariance matrix in Lemma 10, since λ = Ω(d log(T/δ)), we have
with probability at least 1− δ, for any t ∈ [T ],

Σ−1
t ⪯ 3Σ̄−1

t ,
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which implies that

T∑
t=1

Ext∼d0,(a1
t ,a

2
t )∼(π1

t ,π
2
t )
min

{
1, ∥ϕ(xt, a1t )− ϕ(xt, a

2
t )∥2Σ−1

t

}
≤ 3

T∑
t=1

Ext∼d0,(a1
t ,a

2
t )∼(π1

t ,π
2
t )
min

{
1, ∥ϕ(xt, a1t )− ϕ(xt, a

2
t )∥2Σ̄−1

t

}
≤ 6d log(1 + T/dλ).

By taking the result above back into Equation (15), we get with probability at least 1− 2δ,

T∑
t=1

[
J(π∗)− J(π1

t )
]
≤ β

√
T6d log(1 + T/dλ)− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]
, (16)

where the inequality uses Lemma 9.

Moreover, to analyze the average regret Regave(T ), we make the following decomposition

T∑
t=1

J(π1
t )− J(π2

t ) =

T∑
t=1

Ext∼d0

[
Eπ1

t
[r∗(xt, a)− rt(xt, a)] + Eπ2

t
[rt(xt, a)− r∗(xt, a)]

]
︸ ︷︷ ︸

(∆1
t )

+

T∑
t=1

Ext∼d0

[
Eπ1

t
[rt(xt, a)]− Eπ2

t
[rt(xt, a)] + ηDKL(π

2
t (·|xt)∥π0(·|xt))− ηDKL(π

1
t (·|xt)∥π0(·|xt))︸ ︷︷ ︸

(∆2
t )

]
.

(17)

For Term (∆1
t ), we have

(∆1
t ) = Ext∼d0

[
〈
ϕ(xt, π

1
t )− ϕ(xt, π

2
t ), θ

∗ − θt
〉
]

≤ β · Ext∼d0∥ϕ(xt, π1
t )− ϕ(xt, π

2
t )∥Σ−1

t

We can deal with the Term (∆2
t ) by invoking Lemma 4 with π = π2

t and using the definition of the confidence
set:

(∆2
t ) = ηDKL(π

2
t (·|xt)∥π1

t (·|xt)) ≤ β · ∥ϕ(xt, π1
t )− ϕ(xt, π

2
t )∥Σ−1

t
.

Combining the above two inequalities and Equation (17), we have

T∑
t=1

J(π1
t )− J(π2

t ) ≤ 2β

T∑
t=1

Ext∼d0∥ϕ(xt, π1
t )− ϕ(xt, π

2
t )∥Σ−1

t

≤ 2β

T∑
t=1

Ext∼d0,(a1
t ,a

2
t )∼(π1

t ,π
2
t )
∥ϕ(xt, a1t )− ϕ(xt, a

2
t )∥Σ−1

t

≤ 2β

√√√√3T

T∑
t=1

Ext∼d0,(a1
t ,a

2
t )∼(π1

t ,π
2
t )
∥ϕ(xt, a1t )− ϕ(xt, a2t )∥2Σ̄−1

t

≲
√
Tβ2d, (18)

where the last inequality uses Lemma 9. Combining the results of Reg(T ) and the upper bound of
∑T

t=1 J(π
1
t )−

J(π2
t ) in Equation (18), we can obtain the bound for the average regret in the following theorem.
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Therefore, by combining the results above and Equation (16), we have

T∑
t=1

(
2J(π∗)− J(π1

t )− J(π2
t )
)
=

T∑
t=1

2
(
J(π∗)− J(π1

t )
)
+
(
J(π1

t )− J(π2
t )
)

≲
√
Tβ2d− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]
,

which concludes the proof.

B.3 Construction of the Confidence Set

In this subsection, we show that the confidence set contains π∗ for all iterations with high probability by
proving Lemma 4.

Proof of Lemma 4. By the definition of the π∗ that π∗ is optimal at every context, for any π1
t ∈ Π and any

xt,i ∈ X , we have

0 ≤
〈
θ∗, ϕ(xt,i, π

∗)− ϕ(xt,i, π
1
t )
〉
+ ηDKL(π

1
t (·|xt,i)∥π0(·|xt,i))− ηDKL(π

∗(·|xt,i)∥π0(·|xt,i))
=

〈
θ∗ − θt, ϕ(xt,i, π

∗)− ϕ(xt,i, π
1
t )
〉︸ ︷︷ ︸

Term(i)

+
〈
θt, ϕ(xt,i, π

∗)− ϕ(xt,i, π
1
t )
〉
+ ηDKL(π

1
t (·|xt,i)|π0(·|xt,i))− ηDKL(π

∗(·|xt,i)∥π0(·|xt,i))︸ ︷︷ ︸
Term(ii)

, (19)

For Term (i), by Cauchy-Schwarz inequality and Lemma 8 with ΣD = mΣt,m and λ′ = mλ, we have

Term(i) ≤ β · ∥ϕ(xt,i, π∗)− ϕ(xt,i, π
1
t )∥Σ−1

t,m
,

where β = O
(√d log(T/δ)

γ2m

)
and the additional log T factor is because of the union bound over the T iterations.

Meanwhile, by invoking Lemma 2 with π = π∗, π̂ = πt, we obtain that

Term(ii) =
〈
θt, ϕ(xt,i, π

∗)− ϕ(xt,i, π
1
t )
〉
+ ηDKL(π

1
t (·|xt,i)∥π0(·|xt,i))− ηDKL(π

∗(·|xt,i)∥π0(·|xt,i))
= Eπ∗ [rt(xt,i, a)]− Eπ1

t
[rt(xt,i, a)] + ηDKL(π

1
t (·|xt,i)∥π0(·|xt,i))− ηDKL(π

∗(·|xt,i)∥π0(·|xt,i))
= −ηDKL(π

∗(·|xt,i)|π1
t (·|xt,i)).

Taking respective upper bounds for Terms (i) and (ii) back into Equation (19) and summing over i ∈ [m],
we have

β ·
m∑
i=1

∥ϕ(xt,i, π∗)− ϕ(xt,i, π
1
t )∥Σ−1

t,m
− η

m∑
i=1

DKL(π
∗(·|xt,i)|π1

t (·|xt,i)) ≥ 0,

which implies that π∗ ∈ Πt. Therefore, we finish the proof of Lemma 4.

C Proof of the Offline Learning

C.1 Proof of Theorem 1

Proof of Theorem 1. We start with Option I. If we set r̂(x, a) = ⟨θMLE, ϕ(x, a)⟩, and take the policy by

π̂ = argmax
π∈Π

[
⟨θMLE,Ex∼d0

ϕ(x, π)⟩ − β · ∥Ex∼d0
[ϕ(x, π)− ν]∥Σ−1

off
− η · Ex∼d0

[DKL(π(·|x)∥π0(·|x))]
]
.
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Then, we have〈
θMLE,Ex∼d0

[
ϕ(x, π)− ϕ(x, π̂)

]〉
+ β · ∥Ex∼d0

[ϕ(x, π̂)]− ν∥Σ−1
off

− β · ∥Ex∼d0
[ϕ(x, π)]− ν∥Σ−1

off

+ η · Ex∼d0

[
DKL(π̂(·|x)∥π0(·|x))−DKL(π(·|x)∥π0(·|x))

]
≤ 0.

(20)

For simplicity, we denote the LHS of Equation (20) as (⋆). We plugging this into the estimation of J(π)−J(π̂):

J(π)− J(π̂)

= Ex∼d0

[
Ea∼π(·|x)

[
r∗(x, a) + η log

π0(a|x)
π(a|x)

]
− Ea∼π̂(·|x)

[
r∗(x, a) + η log

π0(a|x)
π̂(a|x)

]]
= (⋆) + ⟨θ∗ − θMLE,Ex∼d0

[ϕ(x, π)]⟩+ ⟨θMLE − θ∗,Ex∼d0
[ϕ(x, π̂)]⟩

− β · ∥Ex∼d0
[ϕ(x, π̂)]− ν∥Σ−1

off
+ β · ∥Ex∼d0

[ϕ(x, π)]− ν∥Σ−1
off

≤ ⟨θ∗ − θMLE,Ex∼d0 [ϕ(x, π)]− ν⟩+ ⟨θMLE − θ∗,Ex∼d0 [ϕ(x, π̂)]− ν⟩
− β · ∥Ex∼d0 [ϕ(x, π̂)]− ν∥Σ−1

off
+ β · ∥Ex∼d0 [ϕ(x, π)]− ν∥Σ−1

off

≤ 2β · ∥Ex∼d0
[ϕ(x, π)]− ν∥Σ−1

off
,

where the first inequality is from the Equation (20) and the second inequality uses Cauchy-Schwarz inequality
and Lemma 8.

For Option II, we use the point-wise pessimism:

r̂(x, a) = rMLE(x, a)− β∥ϕ(x, a)− ν∥Σ−1
off
.

Then, we call Oracle 1 with r̂ to get π̂. By Lemma 1, we have

J(π)− J(π̂) =Ex∼d0

[
Eπ[r

∗(x, a)− r̂(x, a)] + Eπ̂[r̂(x, a)− r∗(x, a)]

+ Eπ[r̂(x, a)]− Eπ̂[r̂(x, a)] + ηDKL(π̂(·|x)∥π0(·|x))− ηDKL(π(·|x)∥π0(·|x))
]
,

Since r̂ is obtained from the Oracle 1 with r̂, it follows from Lemma 2:

J(π)− J(π̂)

= Ex∼d0

[
Eπ[r

∗(x, a)− r̂(x, a)] + Eπ̂[r̂(x, a)− r∗(x, a)]− ηDKL(π(·|x)∥π̂(·|x))
]

= Ex∼d0,a∼π(·|x)
[
⟨θ∗ − θMLE, ϕ(x, a)− ν⟩+ β∥ϕ(x, a)− ν∥Σ−1

off

]
+ Ex∼d0,a∼π̂(·|x)

[
⟨θMLE − θ∗, ϕ(x, a)− ν⟩ − β∥ϕ(x, a)− ν∥Σ−1

off

]
− ηEx∼d0

[
DKL(π(·|x)∥π̂(·|x))

]
≤ 2βEx∼d0,a∼π(·|x)∥ϕ(x, a)− ν∥Σ−1

off
− ηEx∼d0

[
DKL(π(·|x)∥π̂(·|x))

]
,

where we use Cauchy-Schwarz inequality in the last inequality.

C.2 Proof of the Direct Preference Learning with Pessimism

In this subsection, we prove the Proposition 1 that combines the direct preference learning with the pes-
simism. The technique is similar to the (Rafailov et al., 2023) with additional consideration of the uncertainty
bonus.
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Proof of Proposition 1. For notation simplicity, we denote the uncertainty bonus as Γ(x, a). We first recall
that in Algorithm 1, we optimize the following KL-regularized target:

π̂ = argmax
π

Ex∼d0,a∼π(·|x)

[
rMLE(x, a)− Γ(x, a)− η log

π(a |x)
π0(a |x)

]
, (21)

where rMLE is the MLE of the BT model on the offline preference dataset D obtained via

rMLE = argmax
r

∑
(x,aw,al)∈Doff

log σ
(
r(x, aw)− r(x, al)

)
. (22)

According to Lemma 11, for any fixed r, we have the following closed-form policy for Equation (21):

π̃r(a|x) =
1

Z(x)
π0(a|x) exp(

1

η
(r(x, a)− Γ(x, a))). (23)

We can solve the reward as

r(x, a) = Γ(x, a) + η log
π̃r(a|x)
π0(a|x)

+ η logZ(x). (24)

We can plug Equation (24) into Equation (22) to get

π̂ = argmax
π̃r

∑
(x,aw,al)∈Doff

log σ

(
η log

πr(a
w|x)

π0(aw|x)
− η log

πr(a
l|x)

π0(al|x)
+ (Γ(x, aw)− Γ(x, al))︸ ︷︷ ︸

m(x,aw,al)

)
, (25)

where the uncertainty serves as an adaptive margin.

Clearly, if r is the solution of Equation (22), the πr is the solution of Equation (25). In contrast, if π is

optimal for the DPO target in Equation (25), then, the induced implicit reward β log π(y|x)
π0(y|x) − Γ(x, a) is

optimal for Equation (22).

D Proof of the Hybrid Learning

D.1 More Discussions on α(mT,Doff)

To better elaborate the quantify α(mT,Doff) in Assumption 2, we provide the following proposition.

Proposition 2. Under Assumption 1, assuming that there exists absolute constants c† and α‡ such that

(mT )α
‡
/noff = 1, Σoff ⪰ B2I + c† · noff · (Ex∼d0z)(Ex∼d0z)

⊤,

where z = ϕ(x, π∗)− ϕ(x, πref). Then, we have α(mT,Doff) = 1− α‡

2 + 1
2 log(mT ) log

(
d

c†C2
cov

)
.

The condition of Proposition 2 is referred to as the single-policy coverage in the literature of offline learning
(Jin et al., 2021b; Xie et al., 2021b,a), which is substantially weaker than the uniform coverage condition
considered in Xie and Jiang (2021); Yin et al. (2022); Xiong et al. (2022a), which requires Doff to well cover
the entire feature space. In this case, Proposition 2 states that α(mT,Doff) mainly depends on the ratio
between the online data size mT and the offline data size noff . It requires that noff is comparable to the total
number of online samples, which seems to be more realistic for LLMs. For instance, in LLaMA2 project, the
noff ≈ 1.5× 106, while the total number of online data is 1.4× 106. Since noff and T are of the same order,
α(mT,Doff) approximates 1/2.
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Proof of Proposition 2. First, we have

∥Ex∼d0
[ϕ(x, π∗)− ϕ(x, πref)]∥Σ−1

off
=

√
(Ex∼d0

[ϕ(x, π∗)− ϕ(x, πref)])
⊤
Σ−1

off Ex∼d0
[ϕ(x, π∗)− ϕ(x, πref))

=

√
tr
(
Ex∼d0 [ϕ(x, π

∗)− ϕ(x, πref)] (Ex∼d0 [ϕ(x, π
∗)− ϕ(x, πref)])

⊤
Σ−1

off

)
,

where the last equality uses the property of trace. To facilitate our analysis, we use the notation that
Σ‡ = Ex∼d0 [ϕ(x, π

∗)− ϕ(x, πref)] (Ex∼d0 [ϕ(x, π
∗)− ϕ(x, πref)])

⊤
. Together with the assumption that

Σoff ⪰ B2I + c† · noff · Ex∼d0
[ϕ(x, π∗)− ϕ(x, πref)] (Ex∼d0

[ϕ(x, π∗)− ϕ(x, πref)])
⊤
,

we further have

∥Ex∼d0 [ϕ(x, π
∗)− ϕ(x, πref)]∥Σ−1

off
≤

√
tr
(
Σ‡ (B2I + c† · noff · Σ‡)

−1
)

=

√√√√ d∑
j=1

λj
B2 + c† · noff · λj

,

where λj denotes the j-th eigenvalue of Σ‡. It is not difficult to show that λj ∈ [0, B2], which further implies
that

∥Ex∼d0 [ϕ(x, π
∗)− ϕ(x, πref)]∥Σ−1

off
≤

√√√√ d∑
j=1

1

1 + c† · noff
≤

√
d

c† · noff
.

If (mT )α
‡
/noff = 1, we have

(mT )1−α(T,Doff ) · ∥Ex∼d0 [ϕ(x, π
∗)− ϕ(x, πref)]∥(Σoff )−1 ≤ Ccov.

with

α(mT,Doff) = 1− α‡

2
+

1

2 log(mT )
log

( d

c†C2
cov

)
,

which concludes the proof of Proposition 2.

D.2 Sequential Hybrid Setting

Theorem 5. Under Assumption 1, let λ = d log(T/δ)/(γ2B2) and β := O
(√d log(T/δ)

γ2

)
. Under Assumption

2, with probability at least 1− 2δ, the output policy of Algorithm 2 with Option II and m = 1 satisfies

T∑
t=1

[
J(π∗)− J(π1

t )
]
≤ βTα(T,Doff ) · Ccov + β

√
6Td log(1 + T/dλ)− η

T∑
t=1

Ext∼d0

[
DKL(π

1
t (·|xt)∥π∗(·|xt))

]
.

Proof of Theorem 5. Define the following covariance matrices:

Σoff = λI +
∑

(x,a1,a2)∈Doff

(ϕ(x, a1)− ϕ(x, a2))(ϕ(x, a1)− ϕ(x, a2))⊤,

Σt = Σoff +

t−1∑
i=1

(ϕ(xi, a
1
i )− ϕ(xi, a

2
i ))(ϕ(xi, a

1
i )− ϕ(xi, a

2
i ))

⊤,

Σ̄t = Σoff +

t−1∑
i=1

Ex∼d0,a1∼πt,a2∼πref
(ϕ(x, a1)− ϕ(x, a2))(ϕ(x, a1)− ϕ(x, a2))⊤.
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Similar to the proofs of the offline and online setting, we get the following decomposition: with probability
at least 1− 2δ,

T∑
t=1

[
J(π∗)− J(πt)

]
=

T∑
t=1

Ext∼d0

[
Eπ∗ [r∗(x, a)− rt(x, a)] + Eπt [r

t(x, a)− r∗(x, a)]
]
− η

T∑
t=1

Ext∼d0

[
DKL(πt(·|xt)∥π∗(·|xt))

]
=

T∑
t=1

Ext∼d0

[ 〈
θ∗ − θt, ϕ(xt, π

∗)− ϕ(xt, πref)
〉 ]

+

T∑
t=1

Ext∼d0

[ 〈
θt − θ∗, ϕ(xt, πt)− ϕ(xt, πref)

〉 ]
− η

T∑
t=1

Ext∼d0

[
DKL(πt(·|xt)∥π∗(·|xt))

]
≤

T∑
t=1

∥θ∗ − θt∥Σt
· Ext∼d0

[
∥ϕ(xt, π∗)− ϕ(xt, πref)∥Σ−1

t

]
+

T∑
t=1

∥θ∗ − θt∥Σt
· Ext∼d0

[
min

{
1, ∥ϕ(xt, πt)− ϕ(xt, πref)∥Σ−1

t

}]
− η

T∑
t=1

Ext∼d0

[
DKL(π

t
1(·|xt)∥π∗(·|xt))

]
,

≤ Tβ · ∥Ex∼d0 [ϕ(x, π
∗)− ϕ(x, πref)]∥Σ−1

off︸ ︷︷ ︸
P1

+β

T∑
t=1

Ext∼d0 min
{
1, ∥ϕ(xt, πt)− ϕ(xt, πref)∥Σ−1

t

}
︸ ︷︷ ︸

P2

− η

T∑
t=1

Ext∼d0

[
DKL(π

t
1(·|xt)∥π∗(·|xt))

]
,

where the first equality holds due to Lemma 1 and Lemma 2, the first inequality uses the Cauchy-Schwarz
inequality, and the last inequality holds due to Lemma 8 and Σt ⪰ Σoff . For the term P1, according to
Assumption 2, we get

P1 =Tα(T,Doff )β · T 1−α(T,Doff )∥Ex∼d0 [ϕ(x, π
∗)− ϕ(x, πref)]∥Σ−1

off

≤Tα(T,Doff )β · Ccov.

For the term P2, we can apply Lemmas 9 and 10 to obtain

P2 ≤β

√√√√3T

T∑
t=1

Ext∼d0,a1∼πt,a2∼πref
min

(
∥ϕ(xt, a1)− ϕ(x, a2)∥2

Σ̄−1
t

, 1
)

≤β
√
3T · 2d log(1 + T/dλ).

By taking the upper bound of P1 and P2 back, we have

T∑
t=1

[
J(π∗)− J(πt)

]
≤ Tα(T,Doff )β · Ccov + β

√
6Td log(1 + T/dλ)− η

T∑
t=1

Ext∼d0

[
DKL(π

t
1(·|xt)∥π∗(·|xt))

]
.

which concludes the proof.
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D.3 Proof of Theorem 2

Proof of Theorem 2. We recall the value decomposition

J(π∗)− J(πt0)

= Ext0∼d0

[
Eπ∗ [r∗(xt0 , a)− r̂(xt0 , a)] + Eπt0

[r̂(xt0 , a)− r∗(xt0 , a)]− η · Ext0∼d0

[
DKL(π

∗(·|xt0)∥πt0(·|xt0))
]

≤ Ext0∼d0

[ 〈
θ∗ − θt0 , ϕ(xt0 , π

∗)− ϕ(xt0 , πref)
〉 ]

︸ ︷︷ ︸
P ′

1

+Ext0∼d0

[ 〈
θt0 − θ∗, ϕ(xt0 , πt0)− ϕ(xt0 , πref)

〉 ]
︸ ︷︷ ︸

P ′
2

− η · Ext0∼d0

[
DKL(π

∗(·|xt0)∥πt0(·|xt0))
]
.

Following the proof of batch online learning (Theorem 3), we can control the exploration error P ′
2 as in

Equation (12) by fixing π2
t as πref . We notice that since πref is directly available to the agent and is used to

collect data, we do not need to optimism to relate its uncertainty to the data. Therefore, we only need to
additionally handle the suboptimality source P1, which satisfies

P ′
1 ≤ β · ∥Ex∼d0

[ϕ(x, π∗)− ϕ(x, πref)]∥Σ−1

off+D1:t0

,

by Cauchy-Schwarz inequality and Lemma 8. It follows that

J(π∗)− J(πt0)

≤
(√

exp
(γT (λ)

T
)− 1 + 2

√
log(2/δ)

2m

)
· C

√
d+ log(T/δ)

γ2m
+ λB2

+ β · ∥Ex∼d0
[ϕ(x, π∗)− ϕ(x, πref)]∥Σ−1

off+D1:t0

− ηExt0
∼d0

[
DKL(π

∗(·|xt0)∥πt0(·|xt0))
]

≤ C

√
d log(T/δ)

γ2m
+ β · ∥Ex∼d0

[ϕ(x, π∗)− ϕ(x, πref)]∥Σ−1

off+D1:t0

− ηExt0
∼d0

[
DKL(π

∗(·|xt0)∥πt0(·|xt0))
]
,

(26)

where we use T ≥ d log(T ) and C > 0 is an absolute constant. Now we proceed to suppose that Assumption 2
holds. Then, we have

β · ∥Ex∼d0
[ϕ(x, π∗)−ϕ(x, πref)]∥Σ−1

off+D1:t0

≤ β · ∥Ex∼d0
[ϕ(x, π∗)−ϕ(x, πref)]∥Σ−1

off
≤ (mT )α(mT,Doff )−1β ·Ccov.

Plugging this estimation back and combining with the choices of parameters, we conclude the proof of
Theorem 2.

In particular, in Proposition 2, when noff ≈ mT as in the LLaMA2 project (Touvron et al., 2023), we have
α(mT,Doff) ≈ 1

2 . In this case, the final sample complexity to find an ϵ-optimal policy is

Õ
(d2 + dC2

cov

γ2ϵ2

)
,

where the convergence rate is jointly determined by the data coverage of the offline dataset and the complexity
of the reward function (exploration). We also remark that this may be a conservative guarantee in general
because the online data typically also improves the coverage coefficient Ccov along the way of training.

E Discussion on the Coverage Condition for Vanilla RLHF

In this section, we investigate the condition for DPO to converge to π∗. DPO is a practical algorithm
derived from the reverse-KL regularized contextual bandit framework presented in this paper, which skips
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the reward modeling step with a clever reparameterization technique and directly optimizes the LLMs based
on the offline preference data Doff by the following loss function

L(θ, π0,Doff) = −
∑

(x,aw,al)∈Doff

[
log σ

(
η log

πθ(a
w|x)

π0(aw|x)
− η log

πθ(a
l|x)

π0(al|x)

)]
, (27)

where aw is the chosen response and al is the rejected response. Given x, aw, al, fitting the model with
the loss in Equation (27) yields a MLE for the preference probability (Lemma 5) by training the LLM as
a reward model. This process, however, necessitates considering the generation distributions of a1 and a2,
which is missing in the original DPO paper.

For simplicity, we assume that the data is collected by some behavior policy πoff . We can drop the dependency
on the state x by fixing on a x with d0(x) > 0 because they are considered separately. Meanwhile, we assume
that the size of the offline dataset |Doff | approaches infinity so we can handle the population loss directly.
In this case, given a prompt x, the loss function in Equation (8) converges to:

L∞(θ, π0, x) = −Ea1,a2∼πoff (·|x)
[
p∗(a1 ≻ a2|x, a1, a2) log pθ(a1 ≻ a2|x, a1, a2)

+p∗(a2 ≻ a1|x, a1, a2) log pθ(a2 ≻ a1|x, a1, a2)
]
,

where pθ is the preference model associated with πθ. Given x, a1, a2, the following lemma demonstrates that
pθ = p∗ uniquely minimizes the loss.

Lemma 5 (Solution of Preference data). Given x, a1, a2, we consider the preference learning for

p∗(a1 ≻ a2|x) = 1

1 + exp
(
η log π∗(a2|x)

π0(a2|x) − η log π∗(a1|x)
π0(a1|x)

) = σ
(
η log

π∗(a1|x)
π0(a1|x)

− η log
π∗(a2|x)
π0(a2|x)

)
,

by

pθ(a1 ≻ a2|x) = 1

1 + exp
(
η log πθ(a2|x)

π0(a2|x) − η log πθ(a1|x)
π0(a1|x)

) = σ
(
η log

πθ(a1|x)
π0(a1|x)

− η log
πθ(a

2|x)
π0(a2|x)

)
.

Consider the population loss (when we have sufficiently many samples),

p∗(a1 ≻ a2|x) log pθ(a1 ≻ a2|x) + p∗(a2 ≻ a1|x) log pθ(a2 ≻ a1|x).

The solution satisfies πθ(a
1|x)/πθ(a2|x) = π∗(a1|x)/π∗(a2|x).

Therefore, if pθ is the minimizer of the loss, we have pθ = p∗ for any a1, a2 on support(πoff). For any

a1, a2 ∈ support(π∗) ∩ support(πoff), we can further obtain that πθ(a
1|x)

π∗(a1|x) =
πθ(a

2|x)
π∗(a2|x) := C (Lemma 5).

We restrict our attention on πθ with the same support with π∗ (as well as π0) and fix a2 and go over a1

to get πθ(·|x) = C · π∗(·|x) on support(πoff). Conversely, for (x, a) pairs where πoff(a|x) = 0, the choice
of pθ (or πθ) does not impact the loss function and can be arbitrary. Assume that πθ = C ′π for all
a ∈ support(π∗) \ support(πoff), where π(·|x) ∈ ∆(A) and define

Ωx = {a ∈ support(π∗) : πoff(a|x) = 0},

as the set of outputs that can be generated by π∗ but not by πoff . Then the policy πθ(a|x) ∝ (1 −
1Ωx

(a))π∗(a|x)+1Ωx
(a)π(a|x) minimizes L∞(θ, π0, x), where 1Ωx

(·) is the indicator function for Ωx and the
normalizing constant C,C ′ satisfy the normalization condition Eπθ(a|x)1 = 1.

Essentially, the dataset used for optimizing loss in Equation (8) imposes constraints via Lemma 5. For
outputs not covered by πoff , π

θ can be an arbitrary solution and only sufficient constraints can lead to
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convergence to the π∗. Therefore, to ensure that πθ converges to π∗ for every state-action pair (x, a) where
π∗(a|x) > 0, it is essential to have |Ωx| = ∅ or

sup
a∈A

π∗(a|x)
πoff(a|x)

<∞, for any x ∈ support(d0),

where we use the convention of 0/0 = 0.

Typically, it is hard to expect a pre-determined offline dataset can provide enough coverage for the preference
learning when scaling to the SOTA models. Moreover, in practice, the dataset is always finite, making the
data source even more important due to the distribution shift issue.

F Technical Lemma Proofs

Proof of Lemma 2. Since π̂ is induced by calling Oracle 1 with r̂, we know that for any x ∈ X ,

π̂(a|x) = 1

Z(x)
π0(a|x) · exp

(1
η
· r̂(a|x)

)
,

where Z(x) =
∑

a∈A π0(a|x) exp(
1
η r̂(x, a)) is the normalization constant. We can rewrite the reward function

as

r̂(x, a) = η log
π̂(a|x)
π0(a|x)

+ η logZ(x).

Plugging this reward reparameterization into the policy optimization error under r̂, we have

Eπ[r̂(x, a)]− Eπ̂[r̂(x, a)]

= Eπ

[
η log

π̂(a|x)
π0(a|x)

]
− Eπ̂

[
η log

π̂(a|x)
π0(a|x)

]
= Eπ

[
η log

π(a|x)
π0(a|x)

]
− Eπ

[
η log

π(a|x)
π̂(a|x)

]
− η ·DKL(π̂(·|x)∥π0(·|x))

= η ·DKL(π(·|x)∥π0(·|x))− η ·DKL(π(·|x)∥π̂(·|x))− η ·DKL(π̂(·|x)∥π0(·|x)).

Plugging the above equality into the LHS of the Lemma 2 completes the proof.

Proof of Lemma 5. The loss function can be reformulated as the KL divergence plus a constant term:

DKL(p
∗∥pθ)−

[
p∗(a1 ≻ a2|x) log p∗(a1 ≻ a2|x) + p∗(a2 ≻ a1|x) log p∗(a2 ≻ a1|x)

]
.

This implies that p∗ = pθ is the unique optimal solution for pθ. Moreover, if the condition πθ(a
1|x)/πθ(a2|x) =

π∗(a1|x)/π∗(a2|x) is satisfied, the optimality of the solution is assured.

G Technical Lemmas

Lemma 6 (Jensen’s Inequality). Suppose that ϕ(w) is a convex function on Ω. Consider w1, · · · , wm ∈ Ω,
and non-negative numbers α1, · · · , αm ∈ R so that

∑m
i=1 αi = 1. Then,

ϕ(

m∑
i=1

αiwi) ≤
m∑
i=1

αiϕ(wi).

45



More generally, let p be a probability measure on Ω, then ϕ(Ew∼pw) ≤ Ew∼pϕ(w). In particular, since ∥ · ∥
is convex (by triangle inequality of the norm), we know that

∥Ez∥ ≤ E∥z∥.

Proof. See Proposition A.9 of Zhang (2023) for a proof.

Lemma 7 (Cauchy Schwarz Inequality). For u, ν ∈ Rd, we have

⟨u, ν⟩ ≤ ∥u∥∥ν∥ ≤ 1

2
∥u∥2 + 1

2
∥ν∥2.

In particular, for a positive-definite matrix Σ, we can take ⟨u, ν⟩ =
〈
Σ1/2u,Σ−1/2ν

〉
to get ⟨u, ν⟩ ≤ ∥u∥Σ∥ν∥Σ−1 .

Lemma 8 (In-sample error of MLE (Faury et al., 2020; Pacchiano et al., 2021; Zhu et al., 2023a)). For a
fixed λ > 0, we denote ΣD as

ΣD := λI +
∑

(x,a1,a2)∈D

(
ϕ(x, a1)− ϕ(x, a2)

)(
ϕ(x, a1)− ϕ(x, a2)

)⊤
.

Assume that ∥ϕ(x, a)∥ ≤ 1 for all (x, a) ∈ X ×A and ∥θ∥ ≤ B. Then, it follows that with probability at least
1− δ, we have

∥θMLE − θ∗∥ΣD ≤ C ·

√
d+ log(1/δ)

γ2
+ λB2,

where γ = 1/(2 + exp(−B) + exp(B)).

Lemma 9 (Elliptical Potential Lemma (Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010; Ab-
basi-Yadkori et al., 2011)). Let {xi}i∈[T ] be a sequence of vectors in Rd with ∥xi∥2 ≤ L <∞ for all t ∈ [T ].

Let Λ0 be a positive-definite matrix and Λt = Λ0 +
∑t

i=1 xix
⊤
i . It holds that

log
(det(Λt)

Λ0

)
≤

T∑
i=1

∥xi∥2Λ−1
i−1

.

Further, if ∥xi∥2 ≤ L for all i ∈ [T ], then we have

T∑
i=1

min{1, ∥xi∥2Λ−1
i−1

} ≤ 2 log
(det(Λt)

Λ0

)
≤ 2d log

( trace(Λ0) + nL2

ddet(Λ0)1/d

)
.

Finally, if λmin(Λ0) ≥ max(1, L2),

T∑
i=1

∥xi∥2Λ−1
i−1

≤ 2 log
(det(Λt)

Λ0

)
.

Lemma 10 (Concentration of Inverse Covariance (Zanette et al., 2021a)). Let µi be the conditional distri-
bution of ϕ given the sampled {ϕ1, . . . , ϕi−1}. Assume ∥ϕ∥2 ≤ 1, for any realization of the vector. Define
Λ =

∑n
i=1 Eϕ∼µi

[ϕϕ⊤]. If λ = Ω(d log(n/δ)), then, with probability at least 1− δ, for any n ≥ 1

3(Λ + λI)−1 ⪰
( n∑

i=1

ϕiϕ
⊤
i + λI

)−1

⪰ 3

5
(Λ + λI)−1.

Lemma 11 (Solution of KL-regularized Optimization (Proposition 7.16 and Theorem 15.3 of Zhang (2023))).
Given a loss functional with respect to π(·|x), written as

Ea∼π(·|x)

[
− r(x, a)− η log

π0(a|x)
π(a|x)

]
= ηDKL

(
π(a|x)

∥∥∥π0(a|x) exp(1
η
r(x, a)

))
,

the minimizer of the loss functional is π∗(a|x) ∝ π0(a|x) exp
(

1
η r(x, a)

)
, also known as Gibbs distribution.

46



H More Experiment Details

All the experiments are conducted using 8×A40 (48G) with 600G RAM, and half-precision training (bf16).
The implementations are based on open-source packages TRL (von Werra et al., 2020) and LMFlow (Diao
et al., 2023), and the code will be publicly available on GitHub in the camera-ready version. The hyper-
parameters used in the experiments are compactly provided in Table 8 and Table 9, with details described
in the subsequent subsections.

5 10 15 20
N :  Size of { i}N

i = 1

0.2

0.4

0.6

Re
je

ct
io

n 
Ra

te

5 10 15 20
N :  Size of { i}N

i = 1

0.2

0.4

0.6

0.8

Re
je

ct
io

n 
Ra

te
5 10 15 20

N :  Size of { i}N
i = 1

0.4

0.6

0.8

1.0

Re
je

ct
io

n 
Ra

te

(a) η = 0.5 (b) η = 1.0 (c) η = 2.0

Figure 7: Illustration of the rejection rate by setting {ηi}Ni=1, where ηi = Nη/i. The model follows the
setting of Figure 1, where we choose Gaussian mixture as π0 and the preference is mathematically captured
by setting r as linearly dependent on a, with r = [1, 0]⊤a and η = 1 for πr.

H.1 Implementation Details

Rejection Sampling. We implement the rejection sampling for responses as described by Liu et al. (2023a).
For each prompt, we initially generate a set of K samples. Our objective is to extract preference pairs from
these samples. In cases where multiple pairs are identified, we utilize the initial ranking round to select the
appropriate pairs. Specifically, to obtain n pairs, we conduct rejection sampling 2n times from the pool of
K samples. Following this, we randomize the order of the samples to finalize the n pairs. The designation of
samples as positive or negative is based on a comparative analysis of their respective rewards. It is important
to note that in the context of rejection sampling, the coefficient corresponds to the η parameter of the target
distribution. Our implementation is grounded in the Python code outlined in Algorithm 1 (Liu et al.,
2023a).

Multi-step approximation. We divide the path into three steps with η ∈ {0.1, 0.3, 0.5} and use 25K
prompts at each time. For RSO implementation, the rejection sampling coefficient is larger than DPO KL
coefficient, where we choose from {0.5, 1, 2, 3} for better performance. Liu et al. (2023a) also suggest similar
phenomenon in RSO.

Hybrid learning. In our experiments, we implemented Hybrid GSHF under a setting where the preference
signal derives from a gold reward function trained on a blend of UltraFeedback, Anthropic HH-RLHF, and
other open-source datasets, using LLaMA2-13B as the backbone. The Anthropic HH-RLHF’s 75K training
prompts were divided into three splits, corresponding to three iterations of training the online algorithm.
For the initial iteration, we utilized an offline dataset, training it with DPO. In iterations two and three,
we generated samples from both our model and the initial model, employing the gold reward to obtain
the ”online” label. Subsequently, our model training incorporated both past and present samples: for the
second iteration, it involved data from iterations one and two; for the third, it included all accumulated
data. Additionally, for each iteration, the generative model training commenced from the initial model,
rather than from the model of the preceding iteration.
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GPT4 Evaluation. We report the detailed GPT4 evaluation results in Table 3, where the model aligned
with DPO is taken as the baseline. The test hyper-parameter is provided in Table 8. For GPT4 evaluation,
we use the GPT-4-turbo model (gpt-4-1106-preview). We take 100 prompts for evaluation and for the final
eval, we count the number of winner as win+tie×0.5.

The prompt is given as

Please act as an impartial judge and evaluate the quality of the responses provided by two AI
assistants to the user question displayed below. You should choose the assistant that follows
the user’s instructions and answers the user’s question better. Your evaluation should consider
factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of detail of their
responses. Begin your evaluation by comparing the two responses and provide a short explanation.
Avoid any position biases and ensure that the order in which the responses were presented does
not influence your decision. Do not allow the length of the responses to influence your evaluation.
Do not favor certain names of the assistants. Be as objective as possible. After providing your
explanation, output your final verdict by strictly following this format: [[A]] if assistant A is
better, [[B]] if assistant B is better, and [[C]] for a tie.

Reward baseline. We mention in passing that we use the test reward of the initial model as the baseline
when presenting the absolute values in Table 2 by convention (Gao et al., 2023; Dong et al., 2023).

H.2 Examples

We provide sample outputs of the models from different RLHF algorithms in Table 5 and 6 with the in-
distribution prompts, and in Table 7 with the OOD prompts.
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HH-RLHF Examples

Prompt:
Human: How do I housebreak a puppy?
Assistant: You’re looking for a pet who will move his bowels in the grass outdoors, rather than messing your house.
Human: yes.
Assistant: When a dog feels the need to defecate, he will signal you with a high pitched noise. You can watch for this
by looking closely at him when he’s relaxing, or by sitting near him and listening. When you observe him signaling you,
you should immediately bring him outside to a patch of grass. As long as the ground is soft, your dog can do his business
anywhere, not just in your house. Just be sure to put him in a separate area where he can
Human: What if he has an accident in my house?
Assistant: Well, in that case you should immediately remove all traces of the accident, and clean the area. (Also, I just
noticed that you asked this two years ago.)
Human: Okay, but do I scold him? Assistant:

Responses:

SFT: You can use positive reinforcement to teach him the behavior you want, or you can use punishment to remind him
of the behavior he needs to stop.

DPO: It’s always a good idea to be honest. It’s important to be firm when you scold your dog, but also calm. The No. 1
goal is to not make your dog fear you. You should use certain words to talk to your dog, but be specific about your needs.
For example, as soon as you observe him demonstrating his need for a bowel movement, you should say, “Do you need to
go outside?” or “Can I help you?” You can also say, “You’re making a mess in the house, I don’t like that.” If your dog
will come to you, then you can also say, “Come to me.” This is a crucial part of house training your dog. You should be
consistently firm, but also calm, and your dog will learn to trust you and follow your orders. There are different methods
to use, such as a clicker, but the important thing is to stay consistent in your commands, don’t use any harsh words, and
test your dog’s limits first before you start to punish him. You can use verbal(5) and physical signals, but you shouldn’t
go overboard with any of them. If you’re not certain how to proceed, speak to a professional trainer about housebreaking
your dog. Remember, housebreaking your dog takes practice and consistency, it’s a lifelong commitment. If you ever have
any questions, don’t hesitate to ask me for more help. I’m always here to help you provide the best environment for your
dog. Have a great day, and happy training!

RSO: Yes, definitely scold him for urinating indoors, and also it’s a good idea to make sure he understands that it’s not
acceptable to soil the house. The most important thing is to be consistent with your corrections and to stay calm. Also,
remember to reward him for good behavior outside. So try to do it right away, and be patient with the training, as it
might take a while for your puppy to learn the whole house-breaking process. Finally, always be consistent and also be
patient! In the end, housebreaking will be an important part of your dog’s training, so just keep at it and stay calm and
confident.

Multi-step RSO: Yes, you should scold any pet who messes in the house. Don’t scream or yell at him, but be firm and
make it very clear that his behavior is wrong, and that it won’t be tolerated. Be sure to provide positive reinforcement for
good behavior in the future. He will learn much more easily from positive reinforcement than from punishment.

Hybrid GSHF: Yes, you should definitely scold a dog for having an accident in the house. You can do this by calling him
over to you, and making a loud noise, or byliance him with a stern look and a brief scolding. The idea is to signal to him
that this behavior is unacceptable, and to teach him that he should only be allowed to defecate outdoors. You should be
very firm and clear, so that he gets the message. After the scolding, be sure to give him lots of praise and treats when he
does follow instructions. If he continues having accidents in the house, you will need to be more consistent and rigorous
with your training, as well as making sure his living environment is always suitable for pooping outside. It’s important to
get him used to the idea that he should only be allowed to defecate outside, and to not reward him for pooping anywhere
except outside.

Table 5: Randomly sampled examples of in-domain prompt from HH-RLHF dataset.
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HH-RLHF Examples

Prompt: Human: How do I teach a 4 year old to read books? Assistant:

SFT: Can I ask what your goal for this is?

DPO: The most important thing to remember is that reading skills develop from almost simple to more complex over
many years, and won’t necessarily come naturally at first even for experienced readers. That said, there are lots of easily
achievable steps you can take to encourage reading success in a young learner. First, it’s important to pick books your
child is interested in. Books with engaging stories, rhymes, and pictures are the best place to start. As the reading skill
develops, though, don’t be afraid to try a variety of materials and stories. Maybe some books that are sweet, maybe some
with more excitement, maybe some smaller print, maybe some high-level illustrations. Read a few chapters together. You
might point out a few words in the book first, and as the child starts to get the picture you’ll gradually encourage more
fluency in what they’re reading. Then you want to practice reading to them. Read with them, and in a distinct, slow voice,
read sentences aloud as they boyas. Remember that when a child feels intimidated by reading, they’re not anticipating
the possible enjoyment that will come from the practice and the learning that takes place from it.

RSO: A great start would be to read some books to them, as an introduction to reading. First make sure you have some
books they’re interested in, so grab a bunch of your kid’s favorite stories. If they’re old enough, show them one or two
examples, and point out the words on the page. Make sure you’re all paying close attention, and talking about the words
you see. Then talk about the pictures in the books. Once they’re familiar with the concepts of reading, you can start
showing them some books that have fewer words, and more pictures. You can work on the mechanics of turning pages and
keeping track of where you are in a book. Gradually introduce concepts of whole words, syllables, and phonemes (a small
unit of sound), and gradually increase the difficulty of the books you read. After you’ve got them reading simple books,
you can start introducing other materials to teach them to read. These might include rhyming stories, vocabulary building
activities, and lessons in sounding out and spelling words.

Multi-step RSO: Here are some tips for teaching a 4-year-old to read: Start by having them read simple sight words
such as “the”, “and”, “is”, “are”, and “to”. Then encourage them to read short sentences and one- or two-word sentences
first, and work their way up from there.Help them understand the meaning of the words they read by first reading the
words slowly, out loud, and making sure they understand what they’re reading.Never correct or downplay their mistakes.
Rather, clarify what they’ve read, and help them understand what they got wrong. Make reading a fun and enjoyable
activity for them, rather than a stressful or frustrating one. If they get stuck on a word or a sentence, try to pick it apart
and work your way through it together. Or just re-read it several times. Make reading a regular part of their daily routine,
such as reading together every night before bed. Think about short sessions of 5-10 minutes, perhaps five times a day, and
build yourself up to longer sessions as they get more comfortable. Remember that different kids take different amounts
of time to learn to read, so have patience with them and recognize that they may take a little longer. But always stay
positive, and keep trying to help them. Hope this helps! Good luck with your teaching! Finally, be sure to make a fun
and enjoyable learning environment for them: Make reading a fun activity every day, read lots of books with them, and
always make reading a positive experience.Ultimately, having a positive experience of reading and being a reader will help
them succeed, and find enjoyment in this activity for many years to come.

Hybrid GSHF: There are several ways a 4 year old can be taught to read books. Here are a few suggestions I’d give: 1.
Use books you already read with them, and ask them to follow along, even if they don’t always get every word right. Just
keep highlighting words they sound right for, and show them how to point to the words they don’t know. 2. Use a book
with large print and lots of pictures, and give them some sentences to learn while you read, followed by a big gesture to
show them what the word is. Then you can work on the sentences again and again until they can read them on their own.
3. Use simple, short books, just 1 or 2 words per page, to build up their skills and confidence step by step. 4. Work with
them in 5 minute chunks. Start with very short books, because it’s easier to learn when they don’t have to sit and do it
for long. Then gradually increase the number of words per page and the length of time they have to work on each page.
5. Work with them in little groups where one person reads and one person is listening, and then practice again in a small
group where they have to work and listen to each other, too. It can help solidify their new skills as they practice them
with each other. 6. When they first start using their own voice to read aloud, build up the sounds they know by showing
them how to sound out words and then practice the sounds and their own words over and over until they get the rhythm
and feel right for the words. 7. When they first read by themselves, start with more simple words, so they aren’t trying
to read text that’s packed with words and phrases.

Table 6: Randomly sampled examples of in-domain prompt from HH-RLHF dataset.
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Ultra-Chat Examples

Prompt:
Human: Write a creative short story set in a post-apocalyptic world where all forms of communication technology have
ceased to exist, and the protagonist is struggling to survive. Be sure to incorporate elements of character development and
describe how the world has changed without communication. Use vivid sensory details to bring the story to life and make
it engaging for the reader.
Assistant:

Responses:

SFT:I’m not all that familiar with this particular setting, but I have some ideas for things to include, and some things I
can guide you on: one idea is that your protagonist has lived in a place that survived the purge.

DPO: In a world where all forms of communication technology have ceased to exist, my friend and I were struggling to
survive in a world that had drastically changed from the one we were used to. There were no newspapers, no mobile
phones, no television, and no computers. Everything that had become a part of our daily routine before the end of
civilization was simply gone. It was not the absence of these things themselves that was so strange, but that we had no
way to communicate even with the people with whom we had become so closely intertwined in our lives. The problems
of survival were heightened by this loss of communication, and life had become more challenging without these things. I
would occasionally take to singing songs, hoping to summon extra help, but with no response from those in need, I had
no way of communicating as effectively as before. This led me to become more creative in my survival strategies, trying
all new approaches and inventing new methods of coping by relying on my instincts and intuition. I was being tested in
this new way, and I had to find new ways to stay alive.

RSO: Determined to survive, even in a world with so much uncertainty and danger, a lone protagonist conceives of ways
to overcome the obstacles that stand in their way. With little to rely on except their own strength and wits, they are
forced to fend for themselves in a world where all forms of communication technology have ceased to exist. Here is their
story in literary form:“It is a dark and quiet world. Everything is silent, frozen in time. I am trapped here in solitude,
completely isolated from the rest of the world. I scavenge for food and resources, while keeping myself prepared for any
potential threats. I desperately search for any scrap of information that may provide me with a glimpse into the outside
world, or that might shed some light on what I might be facing. I am completely miserable and frightened, and I have
yet to find any kind of solace or relief from my torment. I am just hoping that one day, I will discover some type of sign
that life still exists out there somewhere, or maybe some source of communication will be discovered that may allow me to
piece together some understanding of the situation I’ve found myself in.”The protagonist wonders if he even survives at all,
and has little hope for himself, but at the same time they remain hopeful that life will somehow continue, or maybe even
find a means to communicate with each other in some way, and that ultimately they will find relief from their struggles
and be able to live a better existence. It is a difficult and everlasting struggle for survival, but they are determined to
remain hopeful.Ultimately, there is still a tiny sliver of hope that one day we might discover a means to communicate,
which may at least allow us to understand what is happening right now, and eventually reconnect with one another and
restore prosperity and co-existence between human

Multi-step RSO: Here’s a short story set in a post-apocalyptic world where all forms of communication technology have
ceased to exist, and the protagonist is struggling to survive:Plague has decimated much of the world’s population, and the
remaining survivors are struggling to survive in an uninhabitable, barren landscape. The protagonist of this story is trying
to find a way to slake their urges and maintain some level of connection to the outside world, but frustration and isolation
are compounding the stress of their situation.The protagonist wakes up one night to the sound of voices they recognize
from cities they have visited in the past, but they are unable to fully make out the words or understand the meaning of
what they are saying. As the night wears on they can discern the voices are communicating in code, and eventually the
only words they can understand are “run”. They are cut off from the outside world, and unable to immediately return to
the large cities where they have been living, or find safety in an unfamiliar yet friendly environment.Instead the protagonist
seeks out a tiny settlement in the mountains they had visited in the past, determined to find some way to communicate
with the outside world and make contact. During their journey through the barren land they come across other groups who
have been similarly abandoned and now struggle to survive, and empathize with their situation. The protagonist begins
to hear other voices and grow increasingly concerned about trying to escape and find safety, but as they are increasingly
unable to communicate they are pushed deeper into their isolation and frustration. They eventually come across a small
refuge in the mountains, and hope to find a way to return to civilization and overcome their isolation.

Hybrid GSHF: “Silence Today, Death Tomorrow” It was a cold night, and the world had ended.All communication had
ceased to exist – the phones, the television, the computer, even the radio. There were no lights, no sounds, no contact.
Existence had come to a standstill, and not a moment sooner.Only the most remote and primitive tribes survived in this
post-apocalyptic world, and it was even harder to survive with no communication.The protagonist woke from her sleep
in the cold darkness of the forest, severely alone and cut-off from the world. It was a harsh place, and life would not
have been easy in even the best of times, but with no communication, it was impossible.Her feet crunched through frozen
ground as she made her way deeper into the silent darkness. Her fingers struggled against the cold as she tried to light
a small fire.She could hear nothing to tell her if there was anyone else out in the wilderness, perhaps friend or foe, prey
or predator, and she did not know where to look for the first sign of life.She dug into her backpack and used an ancient
axe to begin to carve a rough winter shelter in the soft ground. She had no way to know how long it would take or even
if she would survive the night, but at least she would do her best to stay alive.As she began to huddle in the shelter, a
hypothermic shiver coursed through her body. She curled into a protective ball, tucking her legs up against her chest and
feeling the pain of the frozen ground bringing fresh water on her skin.“Please, I hope it is not too late,” she prayed silently
as she lay in the darkness. But she knew it was a hopeless prayer.

Table 7: Randomly sampled example of OOD prompt from Ultra-Chat.
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Table 8: Hyper-parameters for fine-tuning Open-LLaMA-3B-V2. SFT-RLHF means that we finetune the
models on the preferred samples. Multiple values mean that we search over the space and the bold one is
finally used.

Models Hyper-parameter Value

Learning rate 1× 10−5

Scheduler Cosine decay with 0.03 warm-up
SFT-RLHF Epoch 2

Batch size 12
Block size 2048

Learning rate 1× 10−6

DPO Batch size 32
KL coefficient 0.1

Max lenght of prompt 400

Learning rate {1× 10−6, 5× 10−6}
Batch size 32

RSO KL coefficient 0.1
Rejection sampling coefficient 0.5

Rejection sampling candidates and accepted samples {8− 2, 24− 2, 24− 6}

Offline loop epochs 3
KL path {0.5 → 0.3 → 0.1}

Multi-step RSO Learning rate 1× 10−6

Batch size 32
KL coefficient (3 iters) 0.5, 0.3, 0.1

Rejection sampling coefficient 3
Rejection sampling candidates and accepted samples 8− 2

Online loop epochs 3
Learning rate 1× 10−6

Hybrid GSHF Batch size 32
Preference queries of each epoch 2.5× 104

KL coefficient 0.1

Online loop epochs 3
Learning rate 5× 10−7

Online GSHF DPO Batch size 64
Preference queries of each epoch 2× 104

KL coefficient 0.1
best-of-n 8
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Table 9: Hyper-parameters for auxiliary training.

Models Hyper-parameter Value

Learning rate 1× 10−5

Scheduler Cosine decay with 0.03 warm-up
SFT before RLHF Epoch 1

Batch size 12
Block size 2048

Learning rate 3× 10−5

RM SFT 1.3B Scheduler Cosine decay with 0.03 warm-up
Epoch 2

Batch size 80
Block size 2048

Learning rate 1× 10−5

RM Training 1.3B Scheduler Cosine decay with 0.03 warm-up
Epoch 1

Batch size 80

Learning rate 5× 10−6

RM Training 3B Scheduler Cosine decay with 0.03 warm-up
Epoch 1

Batch size 16

Temperature 1.0
Data generation Max new token 400

Do sample True

Temperature 1.0
Test Settings Max new token 400

Do sample True
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